首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This paper examined the use of calcined sodium silicate as a novel solid base catalyst in the transesterification of soybean oil with methanol. The calcined sodium silicate was characterized by DTA-TG, Hammett indicator method, XRD, SEM, BET, IR and FT-IR. It catalyzed the transesterification of soybean oil to biodiesel with a yield of almost 100% under the following conditions: sodium silicate of 3.0 wt.%, a molar ratio of methanol/oil of 7.5:1, reaction time of 60 min, reaction temperature of 60 °C, and stirring rate of 250 rpm. The oil containing 4.0 wt.% water or 2.5 wt.% FFA could also be transesterified by using this catalyst. The catalyst can be reused for at least 5 cycles without loss of activity.  相似文献   

2.
In this study, potassium hydroxide catalyst supported on palm shell activated carbon was developed for transesterification of palm oil. The Central Composite Design (CCD) of the Response Surface Methodology (RSM) was employed to investigate the effects of reaction temperature, catalyst loading and methanol to oil molar ratio on the production of biodiesel using activated carbon supported catalyst. The highest yield was obtained at 64.1 °C reaction temperature, 30.3 wt.% catalyst loading and 24:1 methanol to oil molar ratio. The physical and chemical properties of the produced biodiesel met the standard specifications. This study proves that activated carbon supported potassium hydroxide is an effective catalyst for transesterification of palm oil.  相似文献   

3.
The production of biodiesel from high free fatty acid mixed crude palm oil using a two-stage process was investigated. The kinetics of the reactions was determined in a batch reactor at various reaction temperatures. It was found that the optimum conditions for reducing high free fatty acid (FFA) in MCPO (8-12 wt.%/wt oil) using esterification was a 10:1 molar ratio of methanol to FFA and using 10 wt.%/wt of sulfuric acid (based on FFA) as catalyst. The subsequent transesterification reaction to convert triglycerides to the methyl ester was found to be optimal using 6:1 molar ratio of methanol to the triglyceride (TG) in MCPO and using 0.6 wt.%/volTG sodium hydroxide as catalyst. Both reactions were carried out in a stirred batch reactor over a period of 20 min at 55, 60 and 65 °C. The concentration of compounds in each sample was analyzed by Thin Layer Chromatography/Flame Ionization Detector (TLC/FID), Karl Fischer, and titration techniques. The results were used for calculating the rate coefficients by using the curve-fitting tool of MATLAB. Optimal reaction rate coefficients for the forward and reverse esterification reactions of FFA were 1.340 and 0.682 l mol−1 min−1, respectively. The corresponding optimal transesterification, rate coefficients for the forward reactions of TG, diglyceride (DG), and monoglyceride (MG) of transesterification were 2.600, 1.186, and 2.303 l mol−1 min−1, and for the reverse reactions were 0.248, 0.227, and 0.022 l mol−1 min−1, respectively.  相似文献   

4.
The production of ethyl esters of fatty acids from a feed material of crude palm oil (CPO) with a high free fatty acid (FFA) content under microwave assistance has been investigated. Parametric studies have been carried out to investigate the optimum conditions for the esterification process (amount of ethanol, amount of catalyst, reaction time, and microwave power). As a result, a molar ratio of FFA to ethanol of 1:24 with 4% wt./wt. of H2SO4/FFA, a microwave power of 70 W, and a reaction time of 60 min have been identified as optimum reaction parameters for the esterification process aided by microwave heating. At the end of the esterification process, the amount of FFA had been reduced from 7.5 wt.% to less than 2 wt.%. Similar results were obtained following conventional heating at 70 °C, but only after a reaction time of 240 min. Transesterification of the esterified palm oil has been accomplished with a molar ratio of CPO to ethanol of 1:4, 1.5 wt.% KOH as a catalyst, a microwave power of 70 W, and a reaction time of 5 min. This two-step esterification and transesterification process provided a yield of 80 wt.% with an ester content of 97.4 wt.%. The final ethyl ester product met with the specifications stipulated by ASTM D6751-02.  相似文献   

5.
Trifluoromethanesulfonic acid (TFMSA) was used to reduce the high free fatty acids (FFA) content in sludge palm oil (SPO). The FFA content of SPO was converted to fatty acid methyl ester (FAME) via esterification reaction. The treated sludge palm oil was used as a raw material for biodiesel production by transesterification process. Several working parameters were optimized, such as dosage of catalyst, molar ratio, reaction temperature and time. Less than 2% of the FFA content was the targeted value. The results showed that the FFA content of SPO was reduced from 16% to less than 2% using the optimum conditions. The yield of the final product after the alkaline transesterification was 84% with 0.07% FFA and the ester content was 96.7%. All other properties met the international standard specifications for biodiesel quality such as EN 14214 and ASTM D6751.  相似文献   

6.
Umer Rashid 《Fuel》2008,87(3):265-273
Present work reports an optimized protocol for the production of biodiesel through alkaline-catalyzed transesterification of rapeseed oil. The reaction variables used were methanol/oil molar ratio (3:1-21:1), catalyst concentration (0.25-1.50%), temperature (35-65 °C), mixing intensity (180-600 rpm) and catalyst type. The evaluation of the transesterification process was followed by gas chromatographic analysis of the rapeseed oil fatty acid methyl esters (biodiesel) at different reaction times. The biodiesel with best yield and quality was produced at methanol/oil molar ratio, 6:1; potassium hydroxide catalyst concentration, 1.0%; mixing intensity, 600 rpm and reaction temperature 65 °C. The yield of the biodiesel produced under optimal condition was 95-96%. It was noted that greater or lower the concentration of KOH or methanol than the optimal values, the reaction either did not fully occur or lead to soap formation.The quality of the biodiesel produced was evaluated by the determinations of important properties such as density, specific gravity, kinematic viscosity, higher heating value, acid value, flash point, pour point, cloud point, combustion point, cold filter plugging point, cetane index, ash content, sulphur content, water content, copper strip corrosion value, distillation temperature and fatty acid composition. The produced biodiesel was found to exhibit fuel properties within the limits prescribed by the latest American Standards for Testing Material (ASTM) and European EN standards.  相似文献   

7.
Biodiesel has been synthesized from karanja, mahua and hybrid {karanja and mahua (50:50 v/v)} feedstocks. A high yield in the range of 95-97% was obtained with all the three feedstocks. Conversion of vegetable oil to fatty acid methyl esters was found to be 98.6%, 95.71% and 94% for karanja, mahua and hybrid feedstocks respectively. The optimized reaction parameters were found to be 6:1 (methanol to oil) molar ratio, H2SO4 (1.5% v/v), at 55 ± 0.5 °C for 1 h during acid esterification for the three feedstocks. During alkaline transesterification, a molar ratio of 8:1 (methanol to oil), 0.8 wt.% KOH (wt/wt) at 55 ± 0.5 °C for 1 h was found to be optimum to achieve high yield for karanja oil. For mahua oil and the hybrid feedstock, 6:1 (methanol to oil) molar ratio, 0.75 (w/w) KOH at 55 ± 0.5 °C for 1 h was optimum for alkaline transesterification to obtain a high yield. High yield and conversion from hybrid feedstock during transesterification reaction was an indication that the reaction was not selective for any particular oil. 1H NMR has been used for the determination of conversion of the feedstock to biodiesel.  相似文献   

8.
G. Kafuku 《Fuel》2010,89(9):2556-2560
Production of biodiesel from non-edible feedstocks is attracting more attention than in the past, for the purpose of manufacturing alternative fuels without interfering with the food chain. Biodiesel was produced using Croton megalocarpus oil as a non-edible feedstock. C. megalocarpus oil was obtained from north Tanzania. This study aimed at optimizing the biodiesel production process parameters experimentally. The parameters involved in the optimization process were the amount of the catalyst, of alcohol, temperature, agitation speed and reaction time. The optimum biodiesel conversion efficiency obtained was 88% at the optimal conditions of 1.0 wt.% amount of potassium hydroxide catalyst, 30 wt.% amount of methanol, 60 °C reaction temperature, 400 rpm agitation rate and 60 min reaction time. The properties of croton biodiesel which were determined fell within the recommended biodiesel standards. Croton oil was found with a free fatty acid content of 1.68% which is below the 2% recommended for the application of the one step alkaline transesterification method. The most remarkable feature of croton biodiesel is its cold flow properties. This biodiesel yielded a cloud and pour point of −4 °C and −9 °C, respectively, while its kinematic viscosity lay within the recommended standard value. This points to the viability of using croton biodiesel in cold regions.  相似文献   

9.
Junhua Zhang  Shangxing Chen  Yuanyuan Yan 《Fuel》2010,89(10):2939-2944
Zanthoxylum bungeanum seed oil (ZSO) with high free fatty acids (FFA) can be used for biodiesel production by ferric sulfate-catalyzed esterification followed by transesterification using calcium oxide (CaO) as an alkaline catalyst. Acid value of ZSO with high FFA can be reduced to less than 2 mg KOH/g by one-step esterification with methanol-to-FFA molar ratio 40.91:1, ferric sulfate 9.75% (based on the weight of FFA), reaction temperature 95 °C and reaction time 2 h, which satisfies transesterification using an alkaline catalyst. The response surface methodology (RSM) was used to optimize the conditions for ZSO biodiesel production using CaO as a catalyst. A quadratic polynomial equation was obtained for biodiesel conversion by multiple regression analysis and verification experiments confirmed the validity of the predicted model. The optimum combination for transesterification was methanol-to-oil molar ratio 11.69:1, catalyst amount 2.52%, and reaction time 2.45 h. At this optimum condition, the conversion to biodiesel reached above 96%. This study provided a practical method to biodiesel production from raw feedstocks with high FFA with high reaction rate, less corrosion, less toxicity, and less environmental problems.  相似文献   

10.
In this study, the catalytic activity of dolomite was evaluated for the transesterification of canola oil with methanol to biodiesel in a heterogeneous system. The influence of the calcination temperature of the catalyst and the reaction variables such as the temperature, catalyst amount, methanol/canola oil molar ratio, and time in biodiesel production were investigated. The maximum activity was obtained with the catalyst calcined at 850 °C. When the reaction was carried out at reflux of methanol, with a 6:1 molar ratio of methanol to canola oil and a catalyst amount of 3 wt.% the highest FAME yield of 91.78% was obtained after 3 h of reaction time.  相似文献   

11.
Biodiesel production through transesterification over natural calciums   总被引:1,自引:0,他引:1  
Transesterification of palm kernel oil (PKO) with methanol over various natural calciums, including limestone calcite, cuttlebone, dolomite, hydroxyapatite, and dicalcium phosphate, has been investigated at 60 °C and 1 atm. The study showed that dolomite, mainly consisting of CaCO3 and MgCO3, is the most active catalyst. The calcination temperature largely affected the physicochemical properties, as evidenced by N2 adsorption-desorption measurement, TGA, SEM and XRD, and the transesterification performance of the resultant catalysts. It was found that the calcination of dolomite at 800 °C resulted in a highly active mixed oxide. CaO was suggested to be the catalytically active site responsible for the methyl ester formation. Under the suitable reaction conditions, the amount of dolomite calcined at 800 °C = 6 wt.% based on the weight of oil, the methanol/oil molar ratio = 30, and the reaction time = 3 h, the methyl ester content of 98.0% can be achieved. The calcined dolomite can be reused many times. The analyses of some important fuel properties indicated that the biodiesel produced had the properties that meet the standard of biodiesel and diesel fuel issued by the Department of Energy Business, Ministry of Energy, Thailand.  相似文献   

12.
The purpose of the work to study biodiesel production by transesterification of Jatropha oil with methanol in a heterogeneous system, using alumina loaded with potassium nitrate as a solid base catalyst. Followed by calcination, the dependence of the conversion of Jatropha oil on the reaction variables such as the catalyst loading, the molar ratio of methanol to oil, reaction temperature, agitation speed and the reaction time was studied. The conversion was over 84% under the conditions of 70 °C, methanol/oil mole ratio of 12:1, reaction time 6 h, agitation speed 600 rpm and catalyst amount (catalyst/oil) of 6% (w). Kinetic study of reaction was also done.  相似文献   

13.
This work deals with the enzymatic transesterification of palm oil with methanol in a solvent-free system. Among the five lipases tested in the initial screening, lipase PS from Burkholderia cepacia resulted in the highest triglyceride conversion. Lipase PS was further investigated in a novel immobilized form by encapsulating within a biopolymer, κ-carrageenan. Using the immobilized lipase the production parameters of biodiesel from palm oil were optimized. The optimal conditions for processing 10 g of palm oil was: 30 °C, 1:7 oil/methanol molar ratio, 1 g water, 5.25 g immobilized lipase, 72 h reaction time and 23.7g relative centrifugal force. At the optimal conditions, triglyceride conversion of up to 100% could be obtained. The immobilized lipase was stable and retained 82% relative transesterification activity after five cycles. Liquid core lipase encapsulated in κ-carrageenan could be a potential immobilized catalyst for eco-friendly production of biodiesel.  相似文献   

14.
The conventional biodiesel production method requires oil extraction followed by transesterification with methanol. The solubility of vegetable oils in methanol is low which decreases the overall rate of reaction. To eliminate the oil extraction step and improve the overall reaction rate, simultaneous extraction, esterification and transesterification were conducted by directly mixing methanol and tetrahydrofuran (THF) co-solvent and sulfuric acid catalyst with ground, desiccated coconut meat (copra) in a batch process and continuing the reaction until the system reached steady state. After separation of the mixture, yield was obtained by measuring the content of triglycerides, diglycerides and monoglycerides in the biodiesel phase. The yield increases with THF:methanol ratio, methanol:oil molar ratio and temperature. Within the range of conditions tested, the highest yield achieved was 96.7% at 60 °C, THF:methanol volume ratio of 0.4 and methanol:oil molar ratio of 60:1. The methanol:oil molar ratio is necessarily high in order to completely wet the copra mass, but is still lower than in previous studies by other researchers on in situ transesterification. Product assays show that the resulting biodiesel product is similar to conventionally produced coconut biodiesel. The results indicate that the in situ transesterification of copra using methanol/THF mixtures merits further study.  相似文献   

15.
In this study, biodiesel was produced from Moringa oleifera oil using sulfated tin oxide enhanced with SiO2 (SO42/SnO2-SiO2) as super acid solid catalyst. The experimental design was done using design of experiment (DoE), specifically, response surface methodology based on three-variable central composite design (CCD) with alpha (α) = 2. The reaction parameters studied were reaction temperature (60 °C to 180 °C), reaction period (1 h to 3 h) and methanol to oil ratio (1:6 to 1:24). It was observed that the yield up to 84 wt.% of Moringa oleifera methyl esters can be obtained with reaction conditions of 150 °C temperature, 150 min reaction time and 1:19.5 methanol to oil ratio, while catalyst concentration and agitation speed are kept at 3 wt.% and 350-360 rpm respectively. Therefore this study presents the possibility of converting a relatively new oil feedstock, Moringa oleifera oil to biodiesel and thus reducing the world's dependency on existing edible oil as biodiesel feedstock.  相似文献   

16.
The aim of this work was to investigate the optimum conditions in biodiesel production from waste frying oil using two-step catalyzed process. In the first step, sulfuric acid was used as a catalyst for the esterification reaction of free fatty acid and methanol in order to reduce the free fatty acid content to be approximate 0.5%. In the second step, the product from the first step was further reacted with methanol using potassium hydroxide as a catalyst. The Box-Behnken design of experiment was carried out using the MINITAB RELEASE 14, and the results were analyzed using response surface methodology. The optimum conditions for biodiesel production were obtained when using methanol to oil molar ratio of 6.1:1, 0.68 wt.% of sulfuric acid, at 51 °C with a reaction time of 60 min in the first step, followed by using molar ratio of methanol to product from the first step of 9.1:1, 1 wt.% KOH, at 55 °C with a reaction time of 60 min in the second step. The percentage of methyl ester in the obtained product was 90.56 ± 0.28%. In addition, the fuel properties of the produced biodiesel were in the acceptable ranges according to Thai standard for community biodiesel.  相似文献   

17.
Kalsilite based heterogeneous catalyst for biodiesel production   总被引:1,自引:0,他引:1  
Guang Wen  Zifeng Yan  Peng Zhang 《Fuel》2010,89(8):2163-2165
Kalsilite (KAlSiO4) was used as a heterogeneous catalyst for transesterification of soybean oil with methanol to biodiesel. Kalsilite showed relatively low catalytic activity for transesterification reaction. The catalytic activity of this catalyst was significantly enhanced by introducing a small amount of lithium nitrate by the impregnation method. A biodiesel yield of 100% and a kinematic viscosity of 3.84 cSt were achieved at a mild temperature of only 120 °C over this lithium modified kalsilite catalyst (2.3 wt.% Li).  相似文献   

18.
This study examined the effect of a heterogeneous base catalyst on the transesterification of soybean oil assisted by microwave irradiation. The results showed that nanopowder calcium oxide (nano CaO) was very efficient in converting soybean oil to biodiesel, and microwave irradiation is more efficient than the conventional bath for biodiesel production. However, the water content of methanol can not improve the conversion rate catalyzed by nano CaO.The suitable reaction conditions that can reach a 96.6% of conversion rate were methanol/oil molar ratio, 7:1; amount of catalyst used, 3.0 wt.%; reaction temperature, 338 K; and reaction time, 60 min. The biodiesel produced is within the limits prescribed by the standard of EN-14214.  相似文献   

19.
This study demonstrated the potential use of local palm fatty acid distillate (PFAD) as alternative feedstock for fatty acid methyl esters (FAMEs) production and the possibility to replace the conventional acid-catalyzed esterification process (with H2SO4), which was industrially proven to suffer by several corrosion and environmental problems, with non-catalytic process in supercritical methanol. At 300 °C with the PFAD to methanol molar ratio of 1:6 and the reaction time of 30 min, the esterification of PFAD in supercritical methanol gave FAMEs production yield of 95%. Compared with transesterification of purified palm oil (PPO) in supercritical methanol, the production of FAMEs reached the maximum yield of only 80% at 300 °C with higher requirement for methanol (1:45 PPO to methanol molar ratio). Compared with the conventional acid-catalyzed esterification of PFAD, only 75% FAMEs yield was obtained in 5 h. The presence of water in the feed (between 0 and 30% v/v) was found to lower the yield of FAMEs production from PFAD significantly. This negative effect was proven to be due to the further hydrolysis of FAMEs, which nevertheless can be minimized when high content of methanol was used.  相似文献   

20.
The production of biodiesel fuel from crude roselle oil was evaluated in this study. The process of alkali-catalyzed transesterification with methanol was carried out to examine the effects of reaction variables on the formation of methyl ester: variables which included methanol-to-oil molar ratios of 4:1-10:1, catalyst concentrations of 0.25-2.0% w/w of oil, reaction temperatures of 32-60 °C, and reaction times of 5-80 min. The methyl ester content from each reaction condition was analyzed by gas chromatography (GC), the optimum condition having been achieved at a methanol-to-oil molar ratio of 8:1, a catalyst concentration of 1.5% w/w of oil, a reaction temperature of 60 °C, and a reaction time of 60 min. The resultant methyl ester content of 99.4% w/w, plus all of the other measured properties of the roselle biodiesel, met the Thai biodiesel (B100) specifications and international standards EN 14214:2008 (E) and ASTM D 6751-07b, with the exception of a higher carbon residue and lower oxidation stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号