首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The integrated gasification combined cycle (IGCC) system is well known for its high efficiency compared with that of other coal fueled power generating systems. In this study, gasification using different types of burners with different oxygen supply angles in a bench-scale entrained flow gasifier was investigated. The effects of the oxygen gas supply angle of the coal burner and resulting oxygen supply location in the gasifier on the syngas composition and temperature of the gasifier were experimentally examined. These changes had a significant influence on the syngas composition of the final stream, carbon conversion, and efficiencies. According to the experimental results, the models using the Aspen Plus process simulator were positioned to define the effects of the experimental parameters and to find the optimum operating conditions in the bench gasifier facility.  相似文献   

2.
The effects of operating factors on a gasification system were reviewed by comparing a computational simulation and real operation results. Notable operation conditions include a conveying gas/coal ratio of 0.44, an oxygen/coal ratio of 0.715, a reaction temperature of 1,000 °C, and reaction pressure of 5bar in the case of Adaro coal; based on this, the cold gas efficiency was estimated as 82.19%. At the point of the reaction temperature effect, because the cold gas efficiencies are more than 80% when the reaction temperatures are higher than 900 °C, the gasifier inner temperature must remain over 900 °C. At high reaction temperature such as 1,400 °C, the reaction pressure shows little effect on the cold gas efficiency. The addition of steam into the gasifier causes an endothermic reaction, and then lowers the gasifier outlet temperature. This is regarded as a positive effect that can reduce the capacity of the syngas cooler located immediately after the gasifier. The most significant factor influencing the cold gas efficiency and the gasifier outlet temperature is the O2/coal ratio. As the O2/coal ratio is lower, the cold gas efficiency is improved, as long as the gasifier inner temperature remains over 1,000 °C. With respect to the calorific value (based on the lower heating value, LHV) of produced gas per unit volume, as the N2/coal ratio is increased, the calorific value per syngas unit volume is lowered. Decreasing the amount of nitrogen for transporting coal is thus a useful route to obtain higher calorific syngas. This phenomenon was also confirmed by the operation results.  相似文献   

3.
Experimental Studies of a 1 Ton/Day coal slurry feed type oxygen blown, entrained flow gasifier have been performed with the slurry concentration and gasifier temperature at 65% and above 1,300 ‡C, respectively. The characteristics of ash fusion temperature with addition of CaO as a flux were investigated to maintain the proper slag tapping condition in the range of reaction temperature. As the flux addition increased, ash fusion temperature showed a eutectic effect with the eutectic at around 20–30% CaO. In order to analyze the gasification characteristics, the effects of O2/coal feed ratio on the product gas composition, heating value, gasifier temperature and cold gas efficiency were evaluated. From the results, it was shown in the case of Kideco coal that the cold gas efficiency was 44–60% and the heating value was 1,700-2,200 kcal/Nm3, while Drayton coal showed a cold gas efficiency of 55–62% and a heating value of 1,800-2,200 kcal/Nm3. In the case of Datong coal, the cold gas efficiency was 38–65%, and the heating value was 2,000-2,300 kcal/Nm3. Also, the results showed that the optimal operating condition of O2/coal ratio for the three different coals was 0.9. Presented at the Int’/Symp. on Chem. Eng. (Cheju, Feb. 8–10, 2001), dedicated to Prof. H. S. Chun on the occasion of his retirement from Korea University.  相似文献   

4.
IGCC示范工程煤气化炉的数值模拟   总被引:4,自引:1,他引:3  
采用Aspen Plus流程模拟软件对某拟建的IGCC示范工程的德士古煤气化炉进行数值模拟,通过考虑碳的不完全转换对计算流程进行了改进,并运用CPD模型预测煤热裂解的产物分布.研究了煤气化炉的重要操作参数(即水煤浆浓度、氧煤比、气化压力和气化温度)对气化结果的影响.在计算区间内,发现高浓度水煤浆浓度范围内,随浓度的增加,煤气的主要成分(H2+CO)的总含量增加.气化温度增大到1400℃左右时,煤气的主要成分随气化温度的进一步增加会趋于一个恒定值.  相似文献   

5.
Performance of an entrained-flow gasification technology of pulverized coal in pilot-scale plant is introduced. The gasifier was operated for a throughput of 30–45 t coal per day at pressures of 1–3 MPa. Dense-phase pneumatic conveying was employed for coal's feeding to the gasifier using nitrogen and carbon dioxide as carrier gas, respectively. Effects of the operating conditions including oxygen/carbon ratio and steam/carbon ratio on gasification results were investigated, and the concentration of (CO + H2) in gaseous products reached up to about 97% (vol., dry basis) when CO2 was employed as carrier gas. Moreover, performances of some important instruments in the conveying system of pulverized coal, such as the level indicator and the solid mass flow meter, were also investigated. The typical operating results in this plant such as (CO + H2) concentration, oxygen consumption, coal consumption, carbon conversion and cold gas efficiency were almost as good as those of some well-known dry-fed entrained-flow coal gasification plants.  相似文献   

6.
An entrained-bed slagging gasifier of 3 ton/day-class was constructed in 1995 and has operated in Korea ever since. A total of nine imported coals were tested to distinguish the gasification performance with coal characteristics under high pressure conditions. Through the tests, Indonesian Baiduri coal was selected as one of the most suitable coals for the gasifier due to its high reactivity, suitable ash fusion temperature, and low ash content. For the Baiduri coal, the gasifier yields more than 98% carbon conversion efficiency and above 80% cold gas efficiency while producing about 60% CO and 30% H2 in the nitrogen-free basis. Results show that none of the heavy metal constituents in the produced slags by the gasification is leached out by water, which is a major advantage over any combustionbased processes where ash normally contains many leachable heavy components that may contaminate the under-ground water eventually. Presented at the Int’l Symp. on Chem. Eng. (Cheju, Feb. 8–10, 2001), dedicated to Prof. H. S. Chun on the occasion of his retirement from Korea University.  相似文献   

7.
Precombustion carbon capture is an effective strategy to reduce large-scale CO2 emissions, which is mainly used in the area of integrated gasification combined cycle (IGCC) power plants. Oxygen transport membranes (OTMs) were suggested as the air separation unit to produce high purity oxygen for the gasifier. However, the improvement in efficiency was limited. Here, a new IGCC process is reported based on a robust OTM reactor, where the OTM reactor is used behind the coal gasifier. This IGCC-OTM process fulfills syngas oxidation, H2 production, and carbon capture in one unit, thus a significant decrease of the energy penalty is expectable. The membrane reactor does not use noble metal components, and exhibits high hydrogen production rates, high hydrogen separation factor (103–104), and stable performance in a gas mixture mimicking real syngas compositions from a coal gasifier with H2S concentrations up to 1,000 ppm.  相似文献   

8.
Various techniques have been developed to increase the efficiency of coal gasification. The use of a catalyst in the catalytic-steam gasification process lowers the activation energy required for the coal gasification reaction. Catalytic-steam gasification uses steam rather than oxygen as the oxidant and can lead to an increased H2/CO ratio. The purpose of this study was to evaluate the composition of syngas produced under various reaction conditions and the effects of these conditions on the catalyst performance in the gasification reaction. Simultaneous evaluation of the kinetic parameters was undertaken through a lab-scale experiment using Indonesian low rank coals and a bench-scale catalytic-steam gasifier design. The composition of the syngas and the reaction characteristics obtained in the lab- and bench-scale experiments employing the catalytic gasification reactor were compared. The optimal conditions for syngas production were empirically derived using lab-scale catalytic-steam gasification. Scale-up of a bench-scale catalytic-steam gasifier was based on the lab-scale results based on the similarities between the two systems. The results indicated that when the catalytic-steam gasification reaction was optimized by applying the K2CO3 catalyst to low rank coal, a higher hydrogen yield could be produced compared to the conventional gasification process, even at low temperature.  相似文献   

9.
Gasification technology, which converts fossil fuels into either combustible gas or synthesis gas (syngas) for subsequent utilization, offers the potential of both clean power and chemicals. Especially, IGCC is recognized as next power generation technology which can replace conventional coal power plants in the near future. It produces not only power but also chemical energy sources such as H2, DME and other chemicals with simultaneous reduction of CO2. This study is focused on the determination of operating conditions for a 300 MW scale IGCC plant with various feedstocks through ASPEN plus simulator. The input materials of gasification are chosen as 4 representative cases of pulverized dry coal (Illinois#6), coal water slurry, bunker-C and naphtha. The gasifier model reflects on the reactivity among the components of syngas in the gasification process through the comparison of syngas composition from a real gasifier. For evaluating the performance of a gasification plant from developed models, simulation results were compared with a real commercial plant through approximation of relative error between real operating data and simulation results. The results were then checked for operating characteristics of each unit process such as gasification, ash removal, acid gas (CO2, H2S) removal and power islands. To evaluate the performance of the developed model, evaluated parameters are chosen as cold gas efficiency and carbon conversion for the gasifier, power output and efficiency of combined cycle. According to simulation results, pulverized dry coal which has 40.93% of plant net efficiency has relatively superiority over the other cases such as 33.45% of coal water slurry, 35.43% of bunker-C and 30.81% of naphtha for generating power in the range of equivalent 300 MW.  相似文献   

10.
About 200,000 bpd (barrel/day) vacuum residue oil is produced from oil refineries in Korea. These are supplied to use asphalt, high sulfur fuel oil, and upgrading residue hydro-desulfurization units. High sulfur fuel oil can be prepared by blending oil residue with light distillate to bring fuel oil characteristics in the range of commercial specifications, which will become more stringently restrictive in the near future in Korea. Vacuum residue oil has high energy content; however, due to its high viscosity, high sulfur content and high concentration of heavy metals are representative of improper low grade fuel, which is considered difficult to gasify. At present, over 20 commercial scale IGCC (Integrated Gasification Combined Cycle) plants using feedstocks with vacuum residue oil for gasification are under construction or operating stage worldwide. Recently, KIER (Korea Institute of Energy Research) has been studying the vacuum residue gasification process using an oxygen-blown entrained-flow gasifier. The experiment runs were evaluated under a reaction temperature of 1,200-1,250 C, reaction pressure of 1.0 kg/cm2, oxygen/V.R ratio of 0.8-1.2 and steam/V.R ratio of 0.4-0.7. Experimental results show a syngas composition (CO+H2), 77-88%; heating value, 2,300-2,600 kcal/Nm3; carbon conversion, 95-99, and cold gas efficiency, 68-72%. Also, equilibrium modeling was used to predict the vacuum residue gasification process and the predicted values reasonably well agreed with experimental data.  相似文献   

11.
阐述了煤气化化学及气化过程,说明煤气化过程主要包括煤的热裂解、部分氧化燃烧、炭的气化、炉渣的生成和排出4个转化步骤。论述了固定床气化技术、流化床气化技术、气流床气化技术3种煤气化技术的工艺、设备、优缺点和适用范围。从煤灰液渣对耐火衬里的腐蚀机理、煤灰化学组成、灰熔融性和灰熔融温度、液渣黏度四方面分析了气流床灰/渣特性。最后阐述了美国煤气化技术进展及发展方向,提出应重点开展IGCC煤气化、低阶煤(褐煤和次烟煤)气化技术研究,开展以提高气化炉可靠性、气化效率和煤种适应性为目标的气化炉优化研究,控制多种污染物排放至极低水平的合成气净化技术研究,低成本高效率的O2分离技术及H2和CO2的分离技术研究等。  相似文献   

12.
The development of coal IGCC (Integrated Gasification Combined Cycle) technology has made it possible to exploit electricity generated from coal at a low cost. Furthermore, IGCC is a pre-requisite for the development of CCS (Carbon Capture and Storage) technology and hydrogen generated from coal. To achieve the need to reduce CO2 emissions, Korea’s 300 MW IGCC RDD&D (Research Development, Demonstration and Dissemination) project was launched in December 2006 under the leadership of the Korea Electric Power Corporation (KEPCO), with the support of the Korea Ministry of Knowledge Economy.When a new fuel is adapted to a gas turbine (such as syngas for IGCC), it is necessary to study the gas turbine combustion characteristics of the fuel, because gas turbines are very sensitive to its physical and chemical properties. This experimental study was conducted by investigating the combustion performance of synthetic gas, which is composed chiefly of hydrogen and carbon monoxide. The results of a test on synthetic gas combustion performance were compared with the results of methane combustion, which is a major component of natural gas. The results of the combustion test of both gases were examined in terms of the turbine’s inlet temperature, combustion dynamics, emission characteristics, and flame structure.From the results of this experimental study, we were able to understand the combustion characteristics of synthetic gas and anticipate the problems when synthetic gas rather than natural gas is fuelled to a gas turbine.  相似文献   

13.
《Fuel》2006,85(12-13):1935-1943
This paper presents modeling of a coal gasification reaction, and prediction of gasification performance for an entrained flow coal gasifier. The purposes of this study are to develop an evaluation technique for design and performance optimization of coal gasifiers using a numerical simulation technique, and to confirm the validity of the model. The coal gasification model suggested in this paper is composed of a pyrolysis model, char gasification model, and gas phase reaction model. A numerical simulation with the coal gasification model is performed on the CRIEPI 2 tons/day (T/D) research scale coal gasifier. Influence of the air ratio on gasification performance, such as a per pass carbon conversion efficiency, amount of product char, a heating value of the product gas, and cold gas efficiency is presented with regard to the 2 T/D gasifier. Gas temperature distribution and product gas composition are also presented. A comparison between the calculation and experimental data shows that most features of the gasification performance were identified accurately by the numerical simulation, confirming the validity of the current model.  相似文献   

14.
串行流化床煤气化试验   总被引:3,自引:3,他引:0  
吴家桦  沈来宏  肖军  卢海勇  王雷 《化工学报》2008,59(8):2103-2110
针对串行流化床煤气化技术特点,以水蒸气为气化剂,在串行流化床试验装置上进行煤气化特性的试验研究,考察了气化反应器温度、蒸汽煤比对煤气组成、热值、冷煤气效率和碳转化率的影响。结果表明,燃烧反应器内燃烧烟气不会串混至气化反应器,该煤气化技术能够稳定连续地从气化反应器获得不含N2的高品质合成气。随着气化反应器温度的升高、蒸汽煤比的增加,煤气热值和冷煤气效率均会提高,但对碳转化率影响有所不同。在试验阶段获得的最高煤气热值为6.9 MJ•m-3,冷煤气效率为68%,碳转化率为92%。  相似文献   

15.
非支配排序进化策略求解煤气化多目标优化问题   总被引:1,自引:1,他引:0       下载免费PDF全文
张宇  鄢烈祥  李国建  史彬 《化工学报》2013,64(12):4628-4633
应用非支配排序进化策略(non-dominated sorting evolution strategy,NSES)对煤气化多目标优化问题进行求解。通过解两个经典测试函数,并与NSGA-2算法进行比较,表明了非支配排序进化策略的有效性和优势。应用Aspen Plus流程模拟软件对煤气化过程进行了模拟计算。在此基础上,以氧煤比、水煤比、气化炉的压力为操作变量,分别对冷煤气效率和有效气产出率两个目标进行灵敏度分析。分析结果表明,3个变量对气化结果评价指标均有不同程度的影响。将非支配进化策略用于煤气化过程的多目标优化模型的求解,得到了Pareto最优前沿面,为确定冷煤气效率和有效气产出率两个目标的协调提供了依据。  相似文献   

16.
IGCC系统中气化炉特性研究   总被引:1,自引:0,他引:1  
气化炉是IGCC系统中的关键部件之一,与其他部件紧密相关.基于整个IGCC系统研究气化炉特性,首先利用Thermoflex软件对某200 MW级IGCC示范工程建立系统模型,从系统的角度出发,对不同气化参数(水煤浆浓度、气化压力、氧煤比和碳转化率)的IGCC系统进行计算,并分析对气化结果的影响.结果表明,水煤浆浓度和氧煤比对气化结果的影响较大.  相似文献   

17.
The gasification of two different coals and chars with CO2 and CO2/O2 mixture in a 48-mm-i.d. circulating fluidized bed (CFB) gasifier is investigated. The effects of operation condition on gas composition, carbon conversion and gasification efficiency were studied. A simple CFB coal gasification district mathematical model has been set up. The effects of coal type and CFB operating conditions on CFB coal gasification are discussed based on the CFB gasification test and model simulation. The main operation parameters in CFB gasification system are coal type, gas superficial velocity, circulating rate of solids and reaction temperature. It is found that CO concentration and carbon conversion increase with increasing solids circulating rate and decreasing gas velocity due to the increase in gas residence time and solids holdup in the CFB. The carbon conversion increases with increasing temperature and O2 concentration in the inlet gas. The experimental results prove that the CFB gasifier works well for high volatile, high reactivity coal.  相似文献   

18.
介绍了Prenflo煤气化工艺的开发过程,论述了Prenflo中试装置的工艺流程、气化煤种和试验结果;以西班牙Puertollano IGCC电站投煤量为2600t/d的Prenflo煤气化装置为例,总结了Prenflo气化工艺自1988年迄今的商业化运行情况;从气化炉结构、煤气流动方向、氧气纯度和原料粉煤细度等方面对Prenflo和Shell2种煤气化工艺进行了区别和对比。  相似文献   

19.
The performance of a small-scale two-staged gasification system is reported. In this system wood chips are gasified with a fixed bed gasifier and then tar in the produced gas is reformed in a non-catalytic reformer, finally the production gas is used to generate electricity. In this system, the gasifying agents are high temperature air and steam supplied into the gasifier and the reformer. This paper reports on optimum gasification air ratio (defined as the ratio of the oxygen mole supplied into the gasifier to the oxygen mole required for complete combustion of biomass), reforming air ratio (defined as the ratio of the oxygen mole supplied in the reformer to the oxygen mole required for the complete combustion of biomass) and steam ratio (defined as the ratio of the steam mole supplied into the gasifier to the carbon mole in biomass supplied into the gasifier) for producing required gas supplied into a dual-fueled diesel engine. The results showed that, under optimum conditions, the higher heating value of the reformed gas was 3.9 MJ/m3N; the cold gas efficiency (defined as the ratio of HHV reformed gas × reformed gas flow rate to HHV biomass × biomass feed rate) of the gasification system was 66%, and the gross thermal efficiency of the overall system was 27%.  相似文献   

20.
J.C. van Dyk  F.B. Waanders   《Fuel》2007,86(17-18):2728-2735
Coal is a crucial feedstock for South Africa’s unique synfuels and petrochemicals industry and used by Sasol as a feedstock to produce synthesis gas via the Sasol-Lurgi Fixed Bed Dry Bottom (FBDB) gasification process. The ash fusion temperature (AFT) gives detail information on the suitability of a coal source for gasification purposes, and specifically to which extent ash agglomeration or clinkering is likely to occur within the gasifier. Ash clinkering inside the gasifier can cause channel burning and unstable operation.Sasol-Lurgi FBDB gasifiers are currently operated with the philosophy of adding an excess of steam to the process to control the H2/CO ratio of the syngas produced, but indirectly also to control the maximum gasifier temperature below the AFT of the coal. An opportunity exists to increase the AFT of the coal fed to the gasifiers by adding AFT increasing minerals to the coal blend before it is fed into the gasification process. For the aim of this study a South African coal source was investigated, as being used by the gasification operations in Secunda.With the specific aim of this study, to increase the AFT, the determination of the AFT of the coal blends where acidic components such as silica (SiO2), alumina (Al2O3) and titania (TiO2) were added was conducted. The Al2O3 had the biggest and most significant effect on the AFT with the least addition to the coal blend. The effect of SiO2 and TiO2 were very similar, but the effect was much smaller and further Al2O3 was needed to increase the AFT to a similar AFT level in comparison to the SiO2 used. Kaolinite, roof and floor components (containing mainly Al2O3 and SiO2) were also added, also showing an increase in the AFT with up to 4 mass% addition. Another observation was that the AFT was non-additive (not a linear weighted calculated average) and not the weighted average AFT as was expected for the other coal properties such as the ash content, for example. The ash slagging characteristics is a non-additive property of individual coal sources in the blend and therefore difficult to predict.In general it can be concluded that the unique opportunity exists to increase the AFT, was tested, proven and mechanistically outlined in this study on the coal source fed to the Sasol-Lurgi FBDB gasifiers. The AFT can be increased to >1350 °C by adding AFT increasing minerals or species to the coal blend before it is fed into the gasification process. By increasing the AFT, the direct effect will be that steam consumption can be decreased, which in turn will improve carbon utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号