首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Screening and catalytic activity of alkaline modified zirconia i.e. Mg/ZrO2, Ca/ZrO2, Sr/ZrO2, and Ba/ZrO2 as heterogeneous catalyst in biodiesel production from waste cooking oil (WCO) have been investigated. The catalysts were prepared via wet impregnation of alkaline nitrate salts supported on zirconia. Physico-chemical characteristics of the catalysts were analyzed by BET surface area, XRD, FESEM and CO2–NH3–TPD. Among the catalysts screened, Sr/ZrO2 exhibited higher catalytic activities. Characterization results disclosed Sr/ZrO2 catalyst possessed balanced basic and acid site concentrations with its pore volume, surface area as well as pore diameters suitable for biodiesel production. The balanced active sites facilitated simultaneous transesterification and esterification of WCO. A plausible mechanism has been suggested for the simultaneous reactions. The effects of operating process conditions such as methanol to oil molar ratio, reaction temperature and catalyst loading on biodiesel production in the presence of Sr/ZrO2 were investigated. Methyl ester (ME) yield at 79.7% was produced over 2.7 wt.% catalyst loading (Sr/ZrO2), 29:1 methanol to oil molar ratio, 169 min of reaction time and 115.5 °C temperature.  相似文献   

2.
甲醇钠催化地沟油制备生物柴油研究   总被引:2,自引:0,他引:2  
赵华  李会鹏 《化工科技》2011,19(6):19-22
以浓硫酸为催化剂,高酸值地沟油与甲醇酯化反应降酸的最优工艺条件为:n(甲醇):n(地沟油)=9:1,m(浓硫酸):m(地沟油)=1.1%,反应温度60℃,反应时间5h.制备生物柴油的最优工艺条件为:以甲醇钠为催化剂,反应时间2h,反应温度65℃,n(甲醇):n(地沟油)=7:1,m(甲醇钠):m(地沟油)=0.8%.制...  相似文献   

3.
This work presents the physical-chemical properties of fuel blends of waste cooking oil biodiesel or castor oil biodiesel with diesel oil. The properties evaluated were fuel density, kinematic viscosity, cetane index, distillation temperatures, and sulfur content, measured according to standard test methods. The results were analyzed based on present specifications for biodiesel fuel in Brazil, Europe, and USA. Fuel density and viscosity were increased with increasing biodiesel concentration, while fuel sulfur content was reduced. Cetane index is decreased with high biodiesel content in diesel oil. The biodiesel blends distillation temperatures T10 and T50 are higher than those of diesel oil, while the distillation temperature T90 is lower. A brief discussion on the possible effects of fuel property variation with biodiesel concentration on engine performance and exhaust emissions is presented. The maximum biodiesel concentration in diesel oil that meets the required characteristics for internal combustion engine application is evaluated, based on the results obtained.  相似文献   

4.
This paper evaluates and optimizes the production of biodiesel from soybean oil and methanol using sodium hydroxide as catalyst. The study and optimization was carried out at low catalyst concentration (0.2 to 0.6 w/w). The reaction was carried out with application of low-frequency high-intensity ultrasound under atmospheric pressure and ambient temperature in a batch reactor. Response surface methodology (RSM) was used to evaluate the influence of methanol to oil ratio and catalyst concentration on soybean oil conversion into biodiesel. Analysis of the operating conditions by RSM showed that the most important operating condition affecting the reaction was the methanol to oil ratio, while catalyst amount showed little significance in the transesterification reaction. Total consumption of oil was obtained when alcohol to oil ratio of 9:1 and catalyst concentration of 0.2 w/w were applied.  相似文献   

5.
The free fatty acids (FFAs) of waste cooking oil (WCO) are readily esterified with crude glycerol in the presence of the solid superacid SO/ZrO2–Al2O3. This reaction lowers the acidity of WCO before biodiesel production. The solid superacid SO/ZrO2–Al2O3 catalyzes both FFA esterification and TAG glycerolysis during the reaction. The conversion of FFA in the WCO with an acid value of 88.4 ± 0.5 mg KOH/g to acylglycerols was 98.4% under optimal conditions (mole ratio of glycerol to FFA = 1.4:1; reaction time = 4 h; reaction temperature = 200°C; catalyst loading = 0.3 wt%) obtained through an orthogonal experiment. The final FAME product with a FAME content of 96.9 ± 0.3 wt% yield was 94.8 wt%, after transesterification of the esterified WCO with methanol, catalyzed by potassium hydroxide. The FAME composition of the products produced by transesterification were identified and quantified by GC–MS. The results suggest that this new glycerol esterification process, using a solid superacid catalyst, affords a promising method to convert oils with high FFA levels, like WCO, to biodiesel. The process has the inherent advantage of easy separation steps for removing excess alcohol and significant savings in energy, when compared to acid catalyzed reactions with methanol to lower acidity. Practical applications : In this work, WCO with a high acid value was esterified with crude glycerol catalyzed by solid super acid, whose formula was expressed as SO/ZrO2–Al2O3. There are distinct advantages to this new esterification process, which include easy separation of the excess crude glycerol by sedimentation or centrifugation, the use of the low cost reactant crude glycerol direct from the byproducts of transesterification, the potential to achieve a very low content of FFAs by post‐refining to improve the yield of the final product, and time and energy saving are found as compared to the traditional methanol esterification process. This new technology provides a promising alternative method for processing feedstocks of high acid value, such as WCO, for the production of biodiesel.  相似文献   

6.
Waste cooking oils (WCO), which contain large amounts of free fatty acids produced in restaurants, are collected by the environmental protection agency in the main cities of China and should be disposed in a suitable way. Biodiesel production from WCO was studied in this paper through experimental investigation of reaction conditions such as methanol/oil molar ratio, alkaline catalyst amount, reaction time and reaction temperature which are deemed to have main impact on reaction conversion efficiency. Experiments have been performed to determine the optimum conditions for this transesterification process by orthogonal analysis of parameters in a four-factor and three-level test. The optimum experimental conditions, which were obtained from the orthogonal test, were methanol/oil molar ratio 9:1, with 1.0 wt.% sodium hydroxide, temperature of 50 °C and 90 min. Verified experiments showed methanol/oil molar ratio 6:1 was more suitable in the process, and under that condition WCO conversion efficiency led to 89.8% and the physical and chemical properties of biodiesel sample satisfied the requirement of relevant international standards. After the analysis main characteristics of biodiese sample, the impact of biodiesel/diesel blend fuels on an YC6M220G turbo-charge diesel engine exhaust emissions was evaluated compared with 0# diesel. The testing results show without any modification to diesel engine, under all conditions dynamical performance kept normal, and the B20, B50 blend fuels (include 20%, 50% crude biodiesel respectively) led to unsatisfactory emissions whilst the B′20 blend fuel (include 20% refined biodiesel) reduced significantly particles, HC and CO etc. emissions. For example CO, HC and particles were reduced by 18.6%, 26.7% and 20.58%, respectively.  相似文献   

7.
Biodiesel utilization has been rapidly growing worldwide as the prime alternative to petrodiesel due to a global rise in diesel fuel demand along with hazardous emissions during its thermochemical conversion. Although, several debatable issues including feedstock availability and price, fuel and food competition, changes in land use and greenhouse gas emission have been raised by using edible as well as inedible feedstocks for the production of biodiesel. However, non-crop feedstocks could be a promising alternative. In this article, waste cooking oils have been recommended as a suitable option for biodiesel production bearing in mind the current national situation. The important factors such as the quantity of waste cooking oil produced, crude oil and vegetable oil import expenses, high-speed diesel imports, waste management issues and environmental hazards are considered. Moreover, process simulation and operating cost evaluation of an acid catalyzed biodiesel production unit are also conducted. The simulation results show that the production cost of waste cooking oil-based biodiesel is about 0.66USD·L-1. We believe that the present overview would open new pathways and ideas for the development of biofuels from waste to energy approach in Pakistan.  相似文献   

8.
Used cooking oil (UCO) was mixed with canola oil at various ratios in order to make use of used cooking oil for production of biodiesel and also lower the cost of biodiesel production. Methyl and ethyl esters were prepared by means of KOH-catalyzed transesterification from the mixtures of both the oils. Water content, acid value and viscosity of most esters met ASTM standard except for ethyl esters prepared from used cooking oil. Canola oil content of at least 60% in the used cooking oil/canola oil feedstock is required in order to produce ethyl ester satisfying ASTM specifications. Although ethanolysis was proved to be more challenging, ethyl esters showed reduced crystallization temperature (−45.0 to −54.4 °C) as compared to methyl esters (−35.3 to −43.0 °C). A somewhat better low-temperature property of ester was observed at higher used cooking oil to canola oil ratio in spite of similar fatty acid compositions of both oils.  相似文献   

9.
Yong Wang  Shun Ma  Lina Kuang  William W. Riley 《Fuel》2011,90(3):1036-1040
The use of surfactants and detergent fractionation to improve the cold flow properties of biodiesel from waste cooking oil (BWCO) was investigated. The effect of five types of surfactants, including sugar esters (S270 and S1570), silicone oil (TSA 750S), polyglycerol ester (LOP-120DP) and diesel conditioner (DDA) on the reduction of the cold filter plugging point (CFPP) of the BWCO, was evaluated, with the greatest reduction to the CFPP of the BWCO (from −10 °C to −16 °C) being was achieved by the addition of 0.02 wt% of polyglycerol ester (LOP-120P). Detergent fractionation of the BWCO was performed by first mixing partially crystallized biodiesel with a chilled detergent (sodium dodecylsulfate) solution accompanied by an electrolyte (magnesium sulfate), and then separating the mixture by centrifugation to obtain the BWCO liquid. An orthogonal experimental design was utilized to investigate the effects of the various parameters on detergent fractionation. The optimal parameters, as obtained by range analysis, were as follows: detergent loading 0.3 wt%, electrolyte loading 1.0 wt%, and water loading 150 wt%. The CFFP of the liquid biodiesel from waste cooking oil (LBWCO) was −17 °C with a yield of 73.1% when the detergent fractionation was performed under these conditions. A limited number of biodiesel physical and chemical properties were analyzed before and after the addition of surfactants and detergent fractionation.  相似文献   

10.
In this comparative study, conversion of waste cooking oil to methyl esters was carried out using the ferric sulfate and the supercritical methanol processes. A two-step transesterification process was used to remove the high free fatty acid contents in the waste cooking oil (WCO). This process resulted in a feedstock to biodiesel conversion yield of about 85-96% using a ferric sulfate catalyst. In the supercritical methanol transesterification method, the yield of biodiesel was about 50-65% in only 15 min of reaction time. The test results revealed that supercritical process method is probably a promising alternative method to the traditional two-step transesterification process using a ferric sulfate catalyst for waste cooking oil conversion. The important variables affecting the methyl ester yield during the transesterification reaction are the molar ratio of alcohol to oil, the catalyst amount and the reaction temperature. The analysis of oil properties, fuel properties and process parameter optimization for the waste cooking oil conversion are also presented.  相似文献   

11.
Shaoyang Liu 《Fuel》2010,89(10):2735-2740
Efficient biodiesel conversion from waste cooking oil with high free fatty acids (FFAs) was achieved via a two-stage procedure (an acid-catalyzed esterification followed by an alkali-catalyzed transesterification) assisted by radio frequency (RF) heating. In the first stage, with only 8-min RF heating the acid number of the waste cooking oil was reduced from 68.2 to 1.64 mg KOH/g by reacting with 3.0% H2SO4 (w/w, based on oil) and 0.8:1 methanol (weight ratio to waste oil). Then, in the second stage, the esterification product (primarily consisting of triglycerides and fatty acid methyl esters) reacted with 0.91% NaOH (w/w, based on triglycerides) and 14.2:1 methanol (molar ratio to triglycerides) under RF heating for 5 min, and an overall conversion rate of 98.8 ± 0.1% was achieved. Response surface methodology was employed to evaluate the effects of RF heating time, H2SO4 dose and methanol/oil weight ratio on the acid-catalyzed esterification. A significant positive interaction between RF heating time and H2SO4 concentration on the esterification was observed.  相似文献   

12.
Esters of fatty acids, derived from vegetable oils or animal fats, and known as biodiesel, are a promising alternative diesel fuel regarding the limited resources of fossil fuels and the environmental concerns. In this work, methanolysis of soybean oil was investigated using Mg-Al hydrotalcites as heterogeneous catalyst, evaluating the effect of Mg/Al ratio on the basicity and catalytic activity for biodiesel production. The catalysts were prepared with Al/(Mg + Al) molar ratios of 0.20, 0.25 and 0.33, and characterized by X-ray diffraction (XRD), textural analysis (BET method) and temperature-programmed desorption of CO2 (CO2-TPD). When the reaction was carried out at 230 °C with a methanol:soybean oil molar ratio of 13:1, a reaction time of 1 h and a catalyst loading of 5 wt.%, the oil conversion was 90% for the sample with Al/(Mg + Al) ratio of 0.33. This sample was the only one to show basic sites of medium strength. We also investigated the reuse of this catalyst, the effect of calcination temperature and made a comparison between refined and acidic oil.  相似文献   

13.
The use of metakaolinite as a catalyst in the transesterification reaction of waste cooking oil with methanol to obtain fatty acid methyl esters (biodiesel) was studied. Kaolinite was thermally activated by dehydroxylation to obtain the metakaolinite phase. Metakaolinite samples were characterized using X-ray diffraction, N2 adsorption-desorption, simultaneous thermo-gravimetric analyse/differential scanning calorimetry (TGA/DSC) experiments on the thermal decomposition of kaolinite and Fourier-transform infrared spectrometer (FTIR) analysis. Parameters related to the transesterification reaction, including temperature, time, the amount of catalyst and the molar ratio of waste cooking oil to methanol, were also investigated. The transesterification reaction produced biodiesel in a maximum yield of 95% under the following conditions: metakaolinite, 5 wt-% (relative to oil); molar ratio of oil to methanol, 1∶23; reaction temperature, 160°C; reaction time, 4 h. After eight consecutive reaction cycles, the metakaolinite can be recovered and reused after being washed and dried. The biodiesel thus obtained exhibited a viscosity of 5.4?mm2?s–1 and a density of 900.1 kg?m–3. The results showed that metakaolinite is a prominent, inexpensive, reusable and thermally stable catalyst for the transesterification of waste cooking oil.  相似文献   

14.
In the present work, the transesterification reaction of soybean frying oil with methanol, in the presence of different heterogeneous catalysts (Mg MCM-41, Mg-Al Hydrotalcite, and K+ impregnated zirconia), using low frequency ultrasonication (24 KHz) and mechanical stirring (600 rpm) for the production of biodiesel fuel was studied. Selection of catalysts was based on a combination of porosity and surface basicity. Their characterization was carried out using X-ray diffraction, Nitrogen adsorption-desorption porosimetry and scanning electron microscopy (SEM) with energy dispersive spectra (EDS). The activities of the catalysts were related to their basic strength. Mg-Al hydrotalcite showed particularly the highest activity (conversion 97%). It is important to mention that the catalyst activity of ZrO2 in the transesterification reaction increased as the catalyst was enriched with more potassium cations becoming more basic. Use of ultrasonication significantly accelerated the transesterification reaction compared to the use of mechanical stirring (5 h versus 24 h).  相似文献   

15.
La/zeolite beta was prepared by an ion exchange method and used to synthesize the biodiesel (fatty acid methyl esters, FAME). The La(NO3)3 was applied as the ion exchange precursor to incorporate La ion into zeolite beta. The composition of the zeolite beta before and after ion exchange was analyzed by the SEM microphotographs and EDS spectrograms, the Brønsted and Lewis acid sites were investigated by FTIR imaging. The transesterification was carried out in a batch reactor and the composition of the FAME product was determined by a potassium hydroxide saponification method. The syntheses conditions with respect to catalytic activities have been optimized individually. Results of the experiment showed that La/zeolite beta shows higher conversion and stability than zeolite beta for the production of biodiesel, which may be correlated to the higher quantity of external Brønsted acid sites available for the reactants. The product consists of a mixture of monoalkyl esters primarily, and when the methanol/ soybean oil molar ratio was 14.5, reaction temperature at 333 K, reaction time 4 h and catalyst/soybean oil mass ratio of 0.011, the conversion of triglyceride 48.9 wt% was obtained from this optimal reaction condition.  相似文献   

16.
E. Rashtizadeh  M. Ghandi 《Fuel》2010,89(11):3393-222
Transesterification of soybean oil (TSO) with methanol to methyl esters (biodiesel) was found to proceed in the presence of KOH loaded on aluminosilicate layers (bentonite, kaolinite), microporous materials (zeolite Y, clinoptiloite), mesoporous materials (MCM-41, Al-MCM-41), some oxides (Al2O3, TiO2, SiO2), and silica gel as heterogeneous catalysts. Effect of reaction parameters such as KOH wt.%, amount of catalyst, reaction time, reaction temperature, molar ratio of methanol to oil and TSO yields up to 99% will be discussed in this presentation. Utilization of bentonite and kaolinite as cheap and eco-friendly solid supports is promising.  相似文献   

17.
R. Maceiras  M. Vega  P. Ramos 《Fuel》2009,88(11):2130-2134
The enzymatic production of biodiesel from waste frying oil with methanol has been studied using immobilized lipase Novozym 435 as catalyst. The effects of methanol to oil molar ratio, dosage of enzyme and reaction time were investigated. The optimum reaction conditions were methanol to oil molar ratio of 25:1, 10% of Novozym 435 based on oil weight and reaction period of 4 h at 50 °C obtaining a biodiesel yield of 89.1%. Moreover, the reusability of the lipase over repeated cycles was also investigated under standard conditions.  相似文献   

18.
In this study, transesterification of soybean oil to biodiesel using CaO as a solid base catalyst was studied. The reaction mechanism was proposed and the separate effects of the molar ratio of methanol to oil, reaction temperature, mass ratio of catalyst to oil and water content were investigated. The experimental results showed that a 12:1 molar ratio of methanol to oil, addition of 8% CaO catalyst, 65 °C reaction temperature and 2.03% water content in methanol gave the best results, and the biodiesel yield exceeded 95% at 3 h. The catalyst lifetime was longer than that of calcined K2CO3/γ-Al2O3 and KF/γ-Al2O3 catalysts. CaO maintained sustained activity even after being repeatedly used for 20 cycles and the biodiesel yield at 1.5 h was not affected much in the repeated experiments.  相似文献   

19.
Biodiesel, an alternative diesel fuel derived from vegetable oil, animal fat, or waste vegetable oil (WVO), is obtained by reacting the oil or fat with an alcohol (transesterification) in the presence of a basic catalyst to produce the corresponding mono‐alkyl esters. In this work, the effect of the catalyst KOH‐to‐WVO ratio, ethanol concentration, and time of reaction on the biodiesel yield were investigated. The transesterification reaction was performed at a constant temperature (35 °C) in order to minimize the cost of heating and ethanol evaporation. A 23 complete factorial design on biodiesel yield (Y) was performed using low and high levels of operating variables: KOH concentration (9–14 g/L), ethanol concentration (30–40 vol‐%) and time (30–40 min). The complete factorial model that can be used to fit the data was determined. The model shows that interactions exist among the parameters and that the parameters, or factors, do not operate independently on the response (biodiesel yield). The highest yield was obtained in the first 30 min of reaction time. The results indicate that the highest yield was 78.5 vol‐% using a KOH‐to‐WVO ratio of 12 g/L and 30 vol‐% ethanol. The ASTM tests indicate that the biodiesel properties are within the biodiesel standard limits.  相似文献   

20.
A continuous process for biodiesel production in supercritical carbon dioxide was implemented. In the transesterification of virgin sunflower oil with methanol, Lipozyme TL IM led to fatty acid methyl esters yields (FAME) that exceeded 98% at 20 MPa and 40 °C, for a residence time of 20 s and an oil to methanol molar ratio of 1:24. Even for moderate reaction conversions, a fractionation stage based on two separators afforded FAME with >96% purity. Lipozyme TL IM was less efficient with waste cooking sunflower oil. In this case, a combination of Lipozyme TL IM and Novozym 435 afforded FAME yields nearing 99%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号