首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In wastewater treatment plants with anaerobic sludge digestion, 15-20% of the nitrogen load is recirculated to the main stream with the return liquors from dewatering. Separate treatment of this ammonium-rich digester supernatant significantly reduces the nitrogen load of the activated sludge system. Two biological applications are considered for nitrogen elimination: (i) classical autotrophic nitrification/heterotrophic denitrification and (ii) partial nitritation/autotrophic anaerobic ammonium oxidation (anammox). With both applications 85-90% nitrogen removal can be achieved, but there are considerable differences in terms of sustainability and costs. The final gaseous products for heterotrophic denitrification are generally not measured and are assumed to be nitrogen gas (N2). However, significant nitrous oxide (N2O) production can occur at elevated nitrite concentrations in the reactor. Denitrification via nitrite instead of nitrate has been promoted in recent years in order to reduce the oxygen and the organic carbon requirements. Obviously this "achievement" turns out to be rather disadvantageous from an overall environmental point of view. On the other hand no unfavorable intermediates are emitted during anaerobic ammonium oxidation. A cost estimate for both applications demonstrates that partial nitritation/anammox is also more economical than classical nitrification/denitrification. Therefore autotrophic nitrogen elimination should be used in future to treat ammonium-rich sludge liquors.  相似文献   

2.
A novel sludge disintegration system (JFE-SD system) was developed for the reduction of excess sludge production in wastewater treatment plants. Chemical and biological treatments were applied to disintegrate excess sludge. At the first step, to enhance biological disintegration, the sludge was pretreated with alkali. At the second step, the sludge was disintegrated by biological treatment. Many kinds of sludge degrading microorganisms integrated the sludge. The efficiency of the new sludge disintegration system was confirmed in a full-scale experiment. The JFE-SD system reduced excess sludge production by approximately 50% during the experimental period. The quality of effluent was kept at quite a good level. Economic analysis revealed that this system could significantly decrease the excess sludge treatment cost.  相似文献   

3.
Nitrogen can be eliminated effectively from sludge digester effluents by anaerobic ammonium oxidation (anammox), but 55-60% of the ammonium must first be oxidized to nitrite. Although a continuous flow stirred tank reactor (CSTR) with suspended biomass could be used, its hydraulic dilution rate is limited to 0.8-1 d(-1) (30 degrees C). Higher specific nitrite production rates can be achieved by sludge retention, as shown here for a moving-bed biofilm reactor (MBBR) with Kaldnes carriers on laboratory and pilot scales. The maximum nitrite production rate amounted to 2.7 gNO2-Nm(-2)d(-1) (3 gO2m(-3)d(-1), 30.5 degrees C), thus doubling the dilution rate compared to CSTR operation with suspended biomass for a supernatant with 700 gNH4-Nm(-3). Whenever the available alkalinity was fully consumed, an optimal amount of nitrite was produced. However, a significant amount of nitrate was produced after 11 months of operation, making the effluent unsuitable for anaerobic ammonium oxidation. Because the sludge retention time (SRT) is relatively long in biofilm systems, slow growth of nitrite oxidizers occurs. None of the selection criteria applied - a high ammonium loading rate, high free ammonia or low oxygen concentration - led to selective suppression of nitrite oxidation. A CSTR or SBR with suspended biomass is consequently recommended for full-scale operation.  相似文献   

4.
Hydrogen produced from anaerobic fermentation of organic matter is a sustainable energy source. Anaerobic hydrogen-producing systems have been typically seeded with heat-treated inocula to eliminate hydrogen-consuming methanogens. This can be both energy- and economically-intensive. In this work, operational parameters were modified to determine if operating a reactor at low pH (5.5) and low SRT (10 hours) would result in a hydrogen-producing system free of methanogens using anaerobic digester sludge with no heat treatment as an inoculum. Initially, the reactor exhibited a hydrogen productivity of approximately 7.9% when fed glucose. After purging was begun with 10% CO2/90% N2, the hydrogen productivity increased to > 20% for the first day. Hydrogenotrophic methanogens then established themselves in the reactor, reducing the hydrogen productivity in the second non-purged phase by 80%. The operational controls examined were not sufficient to eliminate hydrogen-consuming methanogens for longer than approximately one week, and thus further methods must be developed.  相似文献   

5.
This paper presents the characterisation procedure of different types of sludge generated in a wastewater treatment plant to be reproduced in a mathematical model of the sludge digestion process. The automatic calibration method used is based on an optimisation problem and uses a set of mathematical equations related to the a priori knowledge of the sludge composition, the experimental measurements applied to the real sludge, and the definition of the model components. In this work, the potential of the characterisation methodology is shown by means of a real example, taking into account that sludge is a very complex matter to characterise and that the models for digestion also have a considerable number of model components. The results obtained suit both the previously reported characteristics of the primary, secondary and mixed sludge, and the experimental measurements specially done for this work. These three types of sludge have been successfully characterised to be used in complex mathematical models.  相似文献   

6.
One-year (2004) comprehensive investigations in a semi-industrial pilot plant (5 m3) were carried out with the aim of assessing the influence of operational parameters on the partial nitritation/Anammox system performance. In the system designed as a moving-bed biofilm reactor, the influent nitrogen load to the Anammox reactor was progressively increased and a stable Anammox bacterial culture was obtained. Interaction between subsequent aerobic and anaerobic conditions in the partial nitritation and Anammox reactors, respectively, granted conditions to remove nitrogen through the nitrite route. It implies that the oxygen supply can be limited to a high extent. A control strategy for the partial nitritation step relied on concomitant adjustment of the air supply with a variable influent nitrogen load, which can be monitored by both pH and conductivity measurements. In the Anammox reactor, an influent nitrite-to-ammonium ratio plays a vital role in obtaining efficient nitrogen removal. During the 1-year experimental period, the Anammox reactor was operated steadily and average nitrogen removal efficiency was 84% with 97% as the maximum value.  相似文献   

7.
This paper presents the microbial effects of using Ecosan sludge in agriculture. Sludge from KwaZulu Natal in South Africa having a helminth ova content of around 30 HO/gTS, faecal coliforms of 10(6) CFU/gTS, faecal streptococi of 10(6) CFU/gTS and Salmonella spp. of 10(5) CFU/gTS were applied to soils to grow carrots and spinach at different rates. Results showed that helminth ova content in crops was always greater in leaves than in stems, with a content varying from 2 to 15 HO/gTS for spinach and sludge application rates of sludge of 0-37.5 ton/ha and from 2-8 HO/gTS in carrots crops for sludge application rates varying from 0 to35 ton/ha. Health risks resulting from crop consumption were calculated using the beta-poisson and the single-hit exponential models for Salmonella and helminths eggs, respectively. For Salmonella, no risks were found when consuming carrots for all the sludge rates studied while for spinach, risks were high but results were not deemed conclusive due to the technical methods used to measure bacteria. Concerning helminths, it was found that the morbidity rate will increase by 9% for the higher sludge application rates. To increase regional risks by 1% the egg content in crops needs to be less than 0.2 HO/gTS.  相似文献   

8.
Fruit and vegetable waste (FVW) was co-digested with first stage (FSS) and second stage anaerobic digester sludge (SSS) separately, over the course of 10 days, in batch reactors. Addition of FVW significantly increased the methane production in both sludges. After 10 days of digestion FSS + FVW produced 514 ± 57 L CH(4) kg VS(-1)(added) compared with 392 ± 16 L CH(4) for the SSS + FVW. The increased methane yield was most likely due to the higher inoculum substrate ratio of the FSS. The final VS and COD contents of the sewer sludge and FVW mixtures were not significantly different from the control values suggesting that all of the FVW added was degraded within 10 days. It is recommended that FVW be added to the first stage of the anaerobic digester in order to maximize methane generation.  相似文献   

9.
Observations on ozone treatment of excess sludge.   总被引:2,自引:0,他引:2  
This work experimentally studied the effects of ozonation treatment on waste sludge. During the treatment process, various parameters characterizing sludge were investigated. A substantial reduction in the volume of sludge and the release of intracellular and extracellular materials were observed. With the increase of ozone dose, the settleability and water content of sludge improved obviously, but the filterability of sludge deteriorated drastically. In addition, the evolution of particle size was evaluated, which proved the breakup of sludge flocs and cells. There existed a threshold of ozone dose which was 0.04 gO(3)/gMLSS in this work. Above the threshold, the soluble chemical oxygen demand (SCOD), protein, carbohydrate, total nitrogen and total phosphorus in supernatant increased remarkably and the electron transport system (ETS) sludge activity decreased. Organic nitrogen and organic phosphorus occupied the main part of total nitrogen and total phosphorus in the supernatant.  相似文献   

10.
Ultrasonic sludge treatment for enhanced anaerobic digestion.   总被引:5,自引:0,他引:5  
Ultrasound is the term used to describe sound energy at frequencies above 20 kHz. High-powered ultrasound can be applied to a waste stream via purpose-designed tools in order to induce cavitation. This effect results in the rupture of cellular material and reduction of particle size in the waste stream, making the cells more amenable to downstream processing. sonix is a new technology utilising high-powered, concentrated ultrasound for conditioning sludges prior to further treatment. This paper presents recent results from a number of demonstration and full-scale plants treating thickened waste activated sludge (TWAS) prior to anaerobic digestion, therefore enhancing the process. The present studies have proved that the use of ultrasound to enhance anaerobic digestion can be achieved at full scale and effectively result in the TWAS (typically difficult to digest) behaving, after sonication, as if it were a "primary" sludge. The technology presents benefits in terms of increased biogas production, better solids reduction, improved dewatering characteristics of the digested sludge mixture and relatively short payback periods of two years or less subject to the site conditions and practices applicable at that time.  相似文献   

11.
Activated sludge has been widely used in wastewater treatment throughout the world. However, the biggest disadvantage of this method is the by-production of excess sludge in a large amount, resulting in difficulties in operation and high costs for wastewater treatment. Technological innovations for wastewater treatment capable of reducing excess sludge have thus become research topics of interest in recent years. In our present research, we developed a new biological wastewater treatment process by repeated coupling of aerobes and anaerobes (rCAA) to reduce the excess sludge during the treatment of wastewater. During 460-day continuous running, COD (300-700 mg/L) and TOC (100-350 mg/L) were effectively removed, of which the removal rate was above 80 and 90%, respectively. SS in the effluent was 13 mg/L on average in the rCAA bioreactor without a settling tank. The on-site reduction of the excess sludge in the rCAA might be contributed by several mechanisms. The degradation of the grown aerobes after moving into the anaerobic regions was considered to be one of the most important factors. Besides, the repeatedly coupling of aerobes and anaerobes could also result in a complex microbial community with more metazoans and decoupling of the microbial anabolism and catabolism.  相似文献   

12.
An innovative sludge management system based on separation of treatment and disposal of primary and secondary sludge is discussed with reference to a sewage treatment plant of 500,000 equivalent person capacity. Secondary sludge, if treated separately from primary sludge, can be recovered in agriculture considering its relatively high content of nitrogen and phosphorus and negligible presence of pathogens and micropollutants. One typical outlet for primary sludge is still incineration which can be optimised by rendering the process auto thermal and significantly reducing the size of the incineration plant units (dryer, fluidised bed furnace, boiler and units for exhaust gas treatment) in comparison with those required for mixed sludge incineration. Biogas produced in anaerobic digestion is totally available for energy conversion when sludge treatment separation is performed, while in the other case a large proportion may be used as fuel in incineration, thus reducing the net electric energy conversion from 0.85-0.9 to 0.35-0.4 MW for the plant considered.  相似文献   

13.
Batch anaerobic digestion tests of primary sludge and waste activated sludge were conducted for a duration of 123 days to determine the ultimate degradability of the sludges. For primary sludges the inert fraction of the particulate COD that was predicted by the wastewater models could be employed to predict their biodegradability under anaerobic conditions. The degradation of waste activated sludge was adequately characterized for the first 60 days of digestion using a model that assumed equivalent biodegradability of particulate COD components under aerobic and anaerobic conditions. However after 60 days of anaerobic digestion it appeared that decay of the endogenous products was occurring. This could be described with a first order decay function with a coefficient of 0.0075 d(-1). For continuous flow digesters operating at SRTs of 30-60 days, the predicted VSS destruction with the modified model was approximately 10% higher than that predicted on the basis of inert endogenous decay products.  相似文献   

14.
Waste stabilization ponds (WSP) are an often-used option to treat faecal sludges collected from on-site sanitation systems. Since agricultural use is one of the most attractive options for sludge disposal, specific guidelines on the hygienic sludge quality must be fulfilled, such as for viable helminth eggs and Salmonella sp. Although Salmonella isolation methods are well known for other types of samples, they are not suitable for faecal sludge. The reason can be attributed to the co-existence of a native bacterial sludge flora masking Salmonella development, especially if this bacteria is present at low concentrations. In order to select the best methodology for Salmonella recovery from septage sludge, different culture media were assayed at different incubation periods and temperatures. The proposed methodology for Salmonella recovery from sludge can be summarised as follows: (1) enrichment in Rappaport-Vassiliadis broth at 43 degrees C, 48 hours, and (2) isolation in XLD agar at 40 degrees C, 24 hours. Identification of suspected colonies by biochemical tests: TSI, LIA, urease and serological confirmation with Group O Antigen.  相似文献   

15.
A thermophilic anaerobic digester with ultrafilter (TADU) for solids separation offers potential advantages of higher VS destruction, biomass retention, and pathogen removal. However, potential disadvantages include ultrafilter fouling, decreasing flux, and high VFA concentrations. In this study, a thermophilic anaerobic digester coupled to a sintered titanium, cross-flow ultrafilter was operated for over five months. Dairy manure was digested (HRT of 23 days). The filtrate VFA concentration was low (220 mg/L as HAc), average VS destruction was 49%, and a low average effluent fecal coliform concentration of 10(2) MPN/100 mL was observed. The low coliform value may be beneficial if dewatered biosolids are used for livestock bedding since low pathogen counts help prevent mastitis. Ultrafilter fluxes of 40-80 L/m2-hr were maintained by cleaning using caustic (3.5% NaOH) followed by water and acid (3% phosphoric acid). Sand from livestock bedding was found to damage the pump and ultrafilter. If TADU were implemented at full scale, then replacing sand bedding with dewatered biosolids should be considered.  相似文献   

16.
Thermal treatment applied in association with a biological system allows for a significant reduction in excess sludge production (approximately 50%). In general, heat treatment is described as a sludge disintegration technique. This paper offers a thorough study on the impact of heat treatment, at temperatures below 100 degrees C, on the solubilisation of the sludge COD and its biodegradability. Discontinuous heating experiments were performed on activated and digested sludge. At all temperatures tested the released COD for digested sludge was systematically higher than that for activated sludge (15 and 40%, respectively, at 95 degrees C for 40 min of contact time). For the first 30 min, a 1st order kinetic, with respect to the residual COD, was systematically found. In the range of 40-95 degrees C, digested sludge had a lower activation energy than activated sludge (26 kcal/mol compared to 70-160 kcal/mol). COD solubilisation is thus more positively influenced by temperature in the case of activated sludge. This may be due to the significant difference in the ratio of protein/carbohydrate in digested and activated sludge (1-5 and 0.2-0.7, respectively). The increase in the COD/TKN ratio in the solubilised fraction after thermal treatment of activated sludge suggests a preferential solubilisation of proteins over carbohydrates. Respirometric tests performed on the solubilised COD showed that whatever the sludge origin, only 40-50% of released COD is biodegradable at a conventional hydraulic retention time (i.e., 24 h). Hence, heat treatment would act more through organic matter solubilisation rather than by a biodegradability increase.  相似文献   

17.
Anaerobic co-digestion of organic wastes from households, slaughterhouses and meat processing industries was optimised in a half technical scale plant. The plant was operated for 130 days using two different substrates under organic loading rates of 10 and 12 kgCOD.m(-3).d(-1). Since the substrates were rich in fat and protein components (TKN: 12 g.kg(-1) the treatment was challenging. The process was monitored on-line and in the laboratory. It was demonstrated that an intensive and stable co-digestion of partly hydrolysed organic waste and protein rich slaughterhouse waste can be achieved in the balance of inconsistent pH and buffering NH4-N. In the first experimental period the reduction of the substrate COD was almost complete in an overall stable process (COD reduction >82%). In the second period methane productivity increased, but certain intermediate products accumulated constantly. Process design options for a second digestion phase for advanced degradation were investigated. Potential causes for slow and reduced propionic and valeric acid degradation were assessed. Recommendations for full-scale process implementation can be made from the experimental results reported. The highly loaded and stable codigestion of these substrates may be a good technical and economic treatment alternative.  相似文献   

18.
An algal-bacterial consortium was tested for the treatment from a coke factory. A Chlorella vulgaris strain and a phenol-degrading Alcaligenes sp. were first isolated from the wastewater treatment plant to serve as inocula in the subsequent biodegradation tests. Batch tests were then conducted with samples from the real wastewater or using a synthetic wastewater containing 325 mg phenol/l and 500 mg NH4+/l as target pollutants. Direct biological treatment of the real wastewater was not possible due to the toxicity of organic compounds. Activated carbon adsorption and UV(A-B)-irradiation were efficient in detoxifying the effluent for subsequent biological treatment as inoculation of pretreated samples with the algal-bacterial consortium was followed by complete phenol removal and NH4+ removal of 45%. Complete phenol removal and 33% NH4+ removal were achieved during the fed-batch treatment of artificial wastewater at 6 d hydraulic retention time (HRT). Under continuous feeding at 3.6 d HRT, phenol and NH4+ removal dropped to 58 and 18%, respectively. However, complete phenol removal and 29% NH4+ removal were achieved when 8 g NaHCO3/l was added to the artificial wastewater to enhance algal growth. This study confirms the potential of solar-based industrial wastewater treatment based on solar-based UV pretreatment followed by algal-bacterial biodegradation.  相似文献   

19.
This paper presents the results of adsorption studies on the removal of heavy metals (Cr, Cu, Cd, Ni, Pb and Zn) from standard solutions, real wastewater samples and activated sewage sludge using a new technique of liquid-liquid extraction using quaternary ammonium and phosphonium ionic liquids (ILs). Batch sorption experiments were conducted using the ILs [PR4][TS], [PR4][MTBA], [A336][TS] and [A336][MTBA]. Removal of these heavy metals from standard solutions were not effective, however removal of heavy metals from the industrial effluents/wastewater treatment plants were satisfactory, indicating that the removal depends mainly on the composition of the wastewater and cannot be predicted with standard solutions. Removal of heavy metals from activated sludge proved to be more successful than conventional methods such as incineration, acid extraction, thermal treatment, etc. For the heavy metals Cu, Ni and Zn, ≥90% removal was achieved.  相似文献   

20.
This study investigated the discrepancies between the BOD removal rates measured during short term assays and those measured during continuous activated sludge treatment of bleached kraft mill effluent (BKME). A combination of batch tests and fed batch tests with oxygen uptake rate (OUR), chemical oxygen demand (COD), biochemical oxygen demand (BOD), and mixed liquor volatile suspended solids (MLVSS) measurements were used to characterize the degradation rates for the activated sludge treatment of BKME and to divide the soluble readily biodegradable substrate into two to five separate fractions based on biodegradation rates. The removal rates varied by over an order of magnitude between the most readily degradable substrates (1 x 10(-3) mg COD/mg MLVSS minute), and the more slowly degradable substrates (2 x 10(-5) mg COD/mg MLVSS minute). If the readily biodegradable fraction of BKME was modeled as one substrate, initial rate kinetic measurements from batch tests were heavily influenced by the fractions with the greatest degradation rates, while any remaining BOD in the treated effluent was predominantly from the slowly degradable fraction, giving inconsistent results. Taking the multi-component nature of the wastewater into account, batch test results can be used to predict fed-batch and continuous activated sludge reactor performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号