首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
本文研究了从玉米蛋白中酶解生产高F值低聚肽的生产工艺,确定了玉米蛋白预处理、酶解、精制等工艺条件,对得到的样品进行高压液相色谱和氨基酸组成分析可知,本实验条件下肽的分子量在200-1500道尔顿之间,游离氨基酸含量4.8%,F值为21.4,低聚肽含量大于70%。  相似文献   

2.
阐述了玉米高F值低聚肽的生理功能、制备工艺及其应用。玉米高F值低聚肽具有高含量支链氨基酸低含量芳香族氨基酸的特点,有抗疲劳、辅助治疗肝性脑病、改善病人的蛋白质营养状况等功能,其制备工艺主要包括:玉米蛋白粉经脱脂脱杂、酶解、去芳香族氨基酸、脱盐纯化得到生物活性寡肽。  相似文献   

3.
玉米低聚肽中焦谷氨酰亮氨酸(pEL)二肽的研究   总被引:1,自引:0,他引:1  
考察了玉米低聚肽的理化组成成分,由于制备玉米低聚肽的原料玉米蛋白氨基酸序列独特,含有较多的谷氨酰胺及亮氨酸,且大多以相邻的位置存在,研究重点考察了玉米低聚肽中具有抗抑郁活性的肽段焦谷氨酰亮氨酸(pyroGlu-Leu,pEL)二肽结构.结果表明,玉米低聚肽蛋白含量高,干基蛋白含量为87.70%,肽含量为82.76%,平...  相似文献   

4.
为制备含玉米低聚肽的紫苏籽油微胶囊,选择阿拉伯胶、可溶性大豆多糖、辛烯基琥珀酸淀粉钠(HI-CAP 100)、酪蛋白酸钠和大豆分离蛋白5 种乳化剂,并添加不同质量分数的玉米低聚肽制备紫苏籽油乳状液,筛选出制备紫苏籽油乳状液的最适乳化剂及最佳的玉米低聚肽添加比例;进而采用喷雾干燥法制备高载油量的玉米低聚肽紫苏籽油微胶囊,筛选和评价高载油量玉米低聚肽紫苏籽油微胶囊的壁材。结果显示:HI-CAP 100制备的紫苏籽油乳状液的液滴粒径主要分布在0.1~2 μm之间,并且玉米低聚肽添加量为5%时,乳状液的不稳定性指数为0.275,粒径为(0.76±0.02)μm;以HI-CAP 100为壁材经喷雾干燥制成的目标微胶囊(载油量≥50%)表面油含量为3%,表明HI-CAP 100对紫苏籽油的包埋效果较好,并且微胶囊粒径分布均匀,表面较光滑适合作为高载油量玉米低聚肽紫苏籽油微胶囊的壁材;通过加速贮藏实验证明玉米低聚肽与茶多酚棕榈酸酯复配,能提高紫苏籽油微胶囊的抗氧化性。  相似文献   

5.
以玉米低聚肽和氯化亚铁为原料制备玉米低聚肽螯合铁(II),以得率和螯合率评价螯合效果,通过单因素实验、响应面中心组合设计和验证实验确定最佳工艺。通过高效液相色谱仪(HPLC)测定玉米低聚肽螯合铁(II)的氨基酸组成,并通过傅里叶变换红外光谱(FTIR)和扫描电镜(SEM)对玉米低聚肽螯合铁(II)的结构进行表征。结果表明,玉米低聚肽螯合铁(II)的最佳制备工艺为肽盐比5:1,pH7.0,螯合时间35 min,螯合温度65 ℃。此条件下,玉米低聚肽螯合铁(II)的得率为46.59%±1.69%,铁(II)的螯合率为51.75%±2.10%。玉米低聚肽螯合铁(II)中必需氨基酸含量占比25.58%,相对分子质量小于1000 u的组分占比高达89.77%。FTIR结果表明,铁(II)与玉米低聚肽末端羧基或氨基中的氮原子、氧原子形成配位键,从而形成螯合物;SEM结果显示,螯合后分子发生聚集,圆球状结构消失,说明成功生成了一种新型玉米低聚肽铁螯合物。  相似文献   

6.
研究了以茶蛋白为原料制备高F值低聚肽过程中的酶解工艺,采用两步定向酶切的方式,探讨合适的蛋白酶种类,并通过单因素试验考察相关工艺条件对酶切效果的影响。结果表明:碱性蛋白酶和复合风味蛋白酶联用对茶蛋白的水解效果较好;一级定向酶切的最适工艺条件为:底物浓度5%、加酶量(E/S)4%、反应液pH 9.0、反应温度50℃、反应时间3h,此条件下茶蛋白的水解度达到36.02%;二级定向酶切的最适工艺条件为:加酶量(w/v)0.2%、反应液pH值6.5、反应温度55℃、反应时间2h,此条件下水解液的OD220/OD260值达到2.53。该试验为后续水解液分离纯化制备高F值低聚肽产品奠定了基础。  相似文献   

7.
为提高凝固型酸乳的品质和营养价值,以及定量评估植物源活性肽对凝固型酸乳品质的影响,以纯牛乳为原料,保加利亚乳杆菌、嗜热链球菌为发酵剂,采用大豆活性蛋白肽(0%、0.6%、1.2%、1.8%、2.4%)和玉米低聚肽(0%、0.5%、1.0%、1.5%、2.0%)2种植物源活性肽制备凝固型酸乳,并对其品质进行评价,确定植物源活性肽凝固型酸乳的最佳工艺配方。结果表明:大豆蛋白活性肽凝固型酸乳的最佳制备工艺参数为0.6%大豆蛋白活性肽、5.0%白砂糖、5.0%发酵剂、发酵时间5 h、发酵温度42 ℃。玉米低聚肽凝固型酸乳的最佳制备工艺参数为1.0%玉米低聚肽、6.0%白砂糖、5.0%发酵剂、发酵时间5 h、发酵温度42 ℃。在2种条件下制得的凝固型酸乳组织均匀、气味独特、有较好的口感,综合品质得到明显提高。  相似文献   

8.
目的:制备堇叶碎米荠低聚肽,并拓展其应用范围。方法:以堇叶碎米荠为原料,使用碱性蛋白酶酶解,采用超滤膜进行分离浓缩,冷冻干燥后获取堇叶碎米荠低聚肽粉末,并对该低聚肽的结构和抗氧化活性进行分析。结果:堇叶碎米荠蛋白水解的最佳工艺条件为酶解温度50 ℃、酶解pH 10、加酶量4%、底物质量分数2%,此条件下水解度为17.9%;堇叶碎米荠低聚肽的蛋白质和多肽含量分别为49.01%和42.87%;该低聚肽在200~220 nm有较强的吸收带,具有酰胺键的特征吸收峰,二级结构以β-转角为主,相对分子质量<1 000的约占90%;当堇叶碎米荠低聚肽质量浓度为20 mg/mL时,其羟自由基、ABTS自由基、DPPH自由基清除率分别为84.54%,98.22%,60.33%。结论:试验优化的堇叶碎米荠低聚肽制备工艺合理可行,堇叶碎米荠低聚肽具有抗氧化活性。  相似文献   

9.
食物蛋白质中含有各种各样的生物活性肽片断,选择合适的酶水解,可以制备出相应的低聚肽,但其中的分离步骤是关键.以罗非鱼酶解液为原料,探讨树脂法分离其中低聚肽的可行性.结果表明,酶解液经过强酸性阳离子交换树脂732可除去游离氨基酸;进而采用大孔树脂AB-8吸附,5%的乙醇溶液洗脱可达到较好的分离效果,展望可以改良传统低聚肽的分离工艺.  相似文献   

10.
以玉米低聚肽和小麦低聚肽为壁材,维生素D3油为芯材,吐温-20为乳化剂,利用喷雾干燥法成功制备了2种低聚肽包埋维生素D3微胶囊,对比分析了两类微胶囊单因素条件差异原因,并利用正交试验法筛选出玉米肽微胶囊和小麦肽微胶囊的最佳制备条件均为喷雾干燥温度150℃、芯材壁材比1∶20、固形物质量浓度0.15 g/mL,包埋率分别为75.8%和73.8%。微胶囊稳定性分析表明,两类微胶囊均有较好的热稳定性、溶解性和胃环境缓释作用。  相似文献   

11.
Three ruminally and duodenally cannulated cows were assigned to an incomplete 4 × 4 Latin square with four 14-d periods and were fed diets supplemented with urea, solvent soybean meal, xylose-treated soybean meal (XSBM), or corn gluten meal to study the effects of crude protein source on omasal canal flows of soluble AA. Soluble AA in omasal digesta were fractionated by ultrafiltration into soluble proteins greater than 10 kDa (10K), oligopeptides between 3 and 10 kDa (3-10K), peptides smaller than 3 kDa (small peptides), and free AA (FAA). Omasal flow of total soluble AA ranged from 254 to 377 g/d and accounted for 9.2 to 15.9% of total AA flow. Averaged across diets, flows of AA in 10K, 3-10K, small peptides, and FAA were 29, 217, 50, and 5 g/d, respectively, and accounted for 10.3, 71.0, 17.5, and 1.6% of the total soluble AA flow. Cows with diets supplemented with solvent soybean meal had higher flows of Met, Val, and total AA associated with small peptides than those whose diets were supplemented with XSBM, whereas supplementation with corn gluten meal resulted in higher total small peptide-AA flows than did XSBM. Averaged across diets, 27, 75, and 93% of soluble AA in 10K, 3-10K, and peptides plus FAA flowing out of the rumen were of dietary origin. On average, 10% of the total AA flow from the rumen was soluble AA from dietary origin, indicating a substantial escape of dietary soluble N from ruminal degradation. Omasal concentrations and flows of soluble small peptides isolated by ultrafiltration were substantially smaller than most published ruminal small peptide concentrations and outflows measured in acid-deproteinized supernatants of digesta.  相似文献   

12.
大豆多肽的降压活性及其相对分子质量分布研究   总被引:2,自引:0,他引:2  
采用以FAPGG为底物的酶活力检测法对由不同蛋白酶(碱性蛋白酶、胰蛋白酶、风味蛋白酶、木瓜蛋白酶和菠萝蛋白酶)水解制备的大豆多肽的降压活性进行了测定。结果表明,碱性蛋白酶、胰蛋白酶和风味蛋白酶三酶联合水解制备的大豆多肽具有较好的降压活性,其ACE抑制率达62.78%。经超滤发现,5kDa膜滤过液中多肽含量最多,占总量的73.44%,降压活性最强,其ACE抑制率达84.44%。最后,采用SephadexG-25凝胶色谱进一步分离纯化,得到5个峰,其相对分子质量在1 200以下的组分约占75%,其中相对分子质量在250—600左右的组分占47.6%,降压活性最强,ACE抑制率达92.15%。  相似文献   

13.
Effectiveness of low level monensin supplementation on N utilization in lactating dairy cows fed alfalfa silage was assessed using 48 multiparous Holsteins. Cows were fed a covariate diet [% of dry matter (DM): 56% alfalfa silage, 39% ground high moisture corn, 3% soybean meal, 1% ground corn, 1% vitamin-mineral supplements] for 2 wk, then grouped by days in milk into blocks of 4. Cows were randomly assigned within blocks to 1 of 4 diets that were fed for 10 wk: 1) control (covariate diet), 2) control plus 3% fish meal (replacing DM from high moisture corn), 3) monensin (10 mg/kg DM), and 4) monensin plus 3% fish meal. Diets 1 and 3 averaged 16.7% crude protein (25% from free AA in alfalfa silage); diets 2 and 4 averaged 18.5% crude protein. Monensin intake averaged 16 mg/d on diets 1 and 2 (due to contamination) and 248 mg/d on diets 3 and 4. There was no effect of fish meal or monensin on DM intake. However, weight gain and yield of milk, protein, and SNF increased with fish meal feeding, indicating metabolizable protein limited production. Feeding monensin increased blood glucose but reduced yield of 3.5% fat-corrected milk, milk fat content and yield, and milk protein content and yield. Apparent N efficiency was greatest on monensin (diet 3) but lowest on monensin plus fish meal (diet 4). Fish meal reduced blood glucose concentration and apparent N efficiency, and increased concentrations of milk and blood urea. Monensin increased ruminal propionate concentration and decreased concentration of acetate and butyrate and acetate:propionate in ruminally cannulated cows fed the experimental diets. However, these changes were small, suggesting that too little monensin was fed. Fish meal reduced ruminal total amino acid (AA) but monensin did not alter ruminal NH(3) or total AA. Both fish meal and monensin increased NH(3) formation from casein AA using ruminal inoculum from the cannulated cows. There was no evidence from this trial that feeding 250 mg of monensin per day to lactating cows improved N utilization by reducing ruminal catabolism of the large amounts of free AA in alfalfa silage.  相似文献   

14.
本研究以大米淀粉为原料,探讨谷物蛋白肽的添加对大米淀粉理化性质和体外消化性能的影响。结果表明:添加10%的小麦肽对降低体系的峰值黏度、崩解值的效果最好,其值分别降低300 MPa·s;相反,5%的玉米肽使淀粉糊的终值黏度、回升值降低最大,分别降低256 MPa·s、200 MPa·s;谷物蛋白肽可以增大大米淀粉糊的焓变,提高淀粉糊的热稳定性;淀粉溶解度与谷物蛋白肽的添加量成正相关,3种肽对淀粉膨胀度无影响;大米肽能明显改变淀粉冻融稳定性,添加5%、10%可以使淀粉的冻融稳定性增强,析水率降低3%;3种肽可降低大米淀粉中易消化淀粉的含量,综合比较,大米肽对降低淀粉体外消化的效果最好,其中添加5%的玉米肽使易消化淀粉的含量降低值最大,降低25%,其次是添加1%的大米肽。根据谷物蛋白肽的主要氨基酸成分分析,大米肽的碱性氨基酸含量明显要比其他两种肽的含量高,玉米肽中的各氨基酸含量也相应的比小麦肽高;因而,谷物蛋白肽对淀粉的影响主要因素与各自的氨基酸含量以及分子量大小有关。  相似文献   

15.
Eight ruminally cannulated Holstein cows that were part of a larger lactation trial were blocked by days in milk and randomly assigned to replicated 4 × 4 Latin squares to quantify effects of nonprotein N (NPN) content of alfalfa silage (AS) and red clover silage (RCS) on omasal nutrient flows. Diets, fed as total mixed rations, contained 50% dry matter from control AS (CAS), ammonium tetraformate-treated AS (TAS), late maturity RCS (RCS1), or early maturity RCS (RCS2). Silages differed in NPN and acid detergent insoluble N (% of total N): 50 and 4% (CAS); 45 and 3% (TAS); 27 and 8% (RCS1); 29 and 4% (RCS2). The CAS, TAS, and RCS2 diets had 36% high-moisture shelled corn and 3% soybean meal, and the RCS1 diet had 31% high-moisture shelled corn and 9% soybean meal. All diets contained 10% corn silage, 27% neutral detergent fiber, and 17 to 18% crude protein. Compared with RCS, feeding AS increased the supply of rumen-degraded protein and omasal flows of nonammonia N and microbial protein, which may explain the improved milk yield observed in the companion lactation trial. However, omasal flow of rumen-undegraded protein was 34% greater on RCS. Except for Arg, omasal flows of individual AA, branched-chain AA, nonessential AA, essential AA, and total AA did not differ between cows fed AS vs. RCS. Within AS diets, no differences in omasal AA flows were observed. However, omasal flows of Asp, Ser, Glu, Cys, Val, Ile, Tyr, Lys, total nonessential AA, and total AA all were higher in cows fed RCS1 vs. cows fed RCS2. In this trial, there was no advantage to reducing NPN content of hay-crop silage.  相似文献   

16.
以玉米黄粉为原料,利用α-淀粉酶和纤维素酶进行预处理去除淀粉、纤维素杂质,通过单因素法和正交试验对预处理工艺条件进行优化,以蛋白质回收率为考察指标确定最佳水解工艺。预处理后所得的玉米浓缩蛋白粉用8%的亚硫酸钠热变性处理,利用四种不同蛋白酶对玉米蛋白进行水解,以玉米蛋白水解度、溶解度、发泡高度和失水率为考察指标优选出水解玉米蛋白的蛋白酶种类,通过高效液相色谱分析玉米蛋白水解物的组成成分。结果表明,预处理的最适条件为:先用纤维素酶处理后用α-淀粉酶处理;纤维素酶最适温度50 ℃、pH5.0、酶用量1.0%、时间2.5 h、料水比1:3 g/mL;α-淀粉酶最适温度65 ℃、pH6.5、酶用量1.0%、水解时间0.5 h、料水比1:4 g/mL,此时蛋白质回收率为96.1%、蛋白质含量为89.9%。碱性蛋白酶为水解玉米蛋白最佳蛋白酶,此时玉米蛋白水解产物的水解度为14.2%,溶解度为68.6%,发泡高度为64 mm,失水率为16%。水解物中氨基酸含量为35.72%,多肽含量为64.28%。  相似文献   

17.
利用高效凝胶过滤色谱法(GFC)测定玉米蛋白酶解产物寡肽混合物的分子量分布。并利用二极管阵列检测寡肽样品中芳香族氨基酸是否被去除。  相似文献   

18.
以水解度为指标,对碱性蛋白酶酶解魔芋飞粉蛋白条件进行优化;测定不同酶解阶段及不同分子质量魔芋多肽的ACE抑制活性,筛选具有高ACE抑制活性的降血压多肽。结果表明:在底物质量分数2.25%,加酶量3 500 U/(g底物),温度55℃,pH 7.82的条件下酶解270 min,酶解产物的ACE抑制率达到最大值94.6%,此时水解度9.97%,多肽得率12.26%;酶解液经浓缩、干燥得到的魔芋多肽粉呈淡黄色,多肽含量52.62%,粗蛋白含量62.30%;用葡聚糖凝胶G-25和葡聚糖凝胶G-15串联柱分离得到2个具有高ACE抑制活性的多肽组分,其分子质量分别为1 500和1 000 Da,半抑制质量浓度分别为0.12 mg/mL和0.088 mg/mL。  相似文献   

19.
Eight ruminally cannulated Holstein cows that were part of a larger lactation trial were used in 2 replicated 4 × 4 Latin squares to quantify effects of supplementing protein as urea, solvent soybean meal (SSBM), cottonseed meal (CSM), or canola meal (CM) on omasal nutrient flows and microbial protein synthesis. All diets contained (% of dry matter) 21% alfalfa silage and 35% corn silage plus 1) 2% urea plus 41% high-moisture shelled corn (HMSC), 2) 12% SSBM plus 31% HMSC, 3) 14% CSM plus 29% HMSC, or 4) 16% CM plus 27% HMSC. Crude protein was equal across diets, averaging 16.6%. The CSM diet supplied the least rumen-degraded protein and the most rumen-undegraded protein. Microbial nonammonia N flow was similar among the true protein supplements but was 14% lower in cows fed urea. In vivo ruminal passage rate, degradation rate, and estimated escape for the 3 true proteins were, respectively, 0.044/h, 0.105/h, and 29% for SSBM; 0.051/h, 0.050/h, and 51% for CSM; and 0.039/h, 0.081/h, and 34% for CM. This indicated that CSM protein was less degraded because of both a faster passage rate and slower degradation rate. Omasal flow of individual AA, branched-chain AA, essential AA, nonessential AA, and total AA all were lower in cows fed urea compared with one of the true protein supplements. Among the 3 diets supplemented with true protein, omasal flow of Arg was greatest on CSM, and omasal flow of His was greatest on CSM, intermediate on CM, and lowest on SSBM. Lower flows of AA and microbial nonammonia N explained lower yields of milk yield and milk components observed on the urea diet in the companion lactation trial. These results clearly showed that supplementation with true protein was necessary to obtain sufficient microbial protein and rumen-undegraded protein to meet the metabolizable AA requirements of high-producing dairy cows.  相似文献   

20.
采用木瓜蛋白酶水解鸡肉蛋白,通过单因素实验和正交实验确定水解鸡肉蛋白的最适条件,并在此水解条件下酶解24 h,研究水解过程中酶解液中游离氨基酸含量和肽分子质量分布的变化规律。结果表明,最佳的酶解条件为:温度45℃,pH6.5,酶用量6.0%,固液比1∶2,水解时间6 h;酶解产物中游离氨基酸种类齐全且含量较高,水解过程中,游离氨基酸总量变化呈增长的趋势,16 h后变化不大;酶解液的肽分子质量都集中在3 000Da以下,酶解过程中大分子质量肽不断减少,小分子质量肽不断增加;酶解24 h后,分子质量小于1 000 Da的小分子肽和氨基酸含量可达97.19%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号