首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 108 毫秒
1.
2.
Protein kinases, one of the largest enzyme superfamilies, regulate many physiological and pathological processes. They are drug targets for multiple human diseases, including various cancer types. Probes for the photoaffinity labelling of kinases are important research tools for the study of members of this enzyme superfamily. In this review, we discuss the design principles of these probes, which are mainly derived from inhibitors targeting the ATP pocket. Overall, insights from crystal structures guide the placement of photoreactive groups and detection tags. This has resulted in a wide variety of probes, of which we provide a comprehensive overview. We also discuss several areas of application of these probes, including the identification of targets and off-targets of kinase inhibitors, mapping of their binding sites, the development of inhibitor screening assays, the imaging of kinases, and identification of protein binding partners.  相似文献   

3.
The elucidation of signalling pathways relies heavily upon the identification of protein kinase substrates. Recent investigations have demonstrated the efficacy of chemical genetics using ATP analogues and modified protein kinases for specific substrate labelling. Here we combine N(6) -(cyclohexyl)ATPγS with an analogue-sensitive cdk2 variant to thiophosphorylate its substrates and demonstrate a pH-dependent, chemoselective, one-step alkylation to facilitate the detection or isolation of thiophosphorylated peptides.  相似文献   

4.
STE20/SPS1‐related proline/alanine‐rich kinase (SPAK) and oxidative‐stress‐responsive kinase 1 (OSR1) are two serine/threonine protein kinases that play key roles in regulating ion homeostasis. Various SPAK and OSR1 mouse models exhibited reduced blood pressure. Herein, the discovery of verteporfin, a photosensitising agent used in photodynamic therapy, as a potent inhibitor of SPAK and OSR1 kinases is reported. It is shown that verteporfin binds the kinase domains of SPAK and OSR1 and inhibits their catalytic activity in an adenosine triphosphate (ATP)‐independent manner. In cells, verteporfin was able to suppress the phosphorylation of the ion co‐transporter NKCC1; a downstream physiological substrate of SPAK and OSR1 kinases. Kinase panel screening indicated that verteporfin inhibited a further eight protein kinases more potently than that of SPAK and OSR1. Although verteporfin has largely been studied as a modifier of the Hippo signalling pathway, this work indicates that the WNK‐SPAK/OSR1 signalling cascade is also a target of this clinical agent. This finding could explain the fluctuation in blood pressure noted in patients and animals treated with this drug.  相似文献   

5.
The protein kinase family can be subdivided into two main groupsbased on their ability to phosphorylate Ser/Thr or Tyr substrates.In order to understand the basis of this functional difference,we have carried out a comparative analysis of sequence conservationwithin and between the Ser/Thr and Tyr protein kinases. A multiplesequence alignment of 86 protein kinase sequences was generated.For each position in the alignment we have computed the conservationof residue type in the Ser/Thr, in the Tyr and in both of thekinase subfamilies. To understand the structural and/or functionalbasis for the conservation, we have mapped these conservationproperties onto the backbone of the recently determined structureof the cAMP–dependent Ser/Thr kinase. The results showthat the kinase structure can be roughly segregated, based uponconservation, into three zones. The inner zone contains residueshighly conserved in all the kinase family and describes thehydrophobic core of the enzyme together with residues essentialfor substrate and ATP binding and catalysis. The outer zonecontains residues highly variable in all kinases and representsthe solvent–exposed surface of the protein. The thirdzone is comprised of residues conserved in either the Ser/Thror Tyr kinases or in both, but which are not conserved betweenthem. These are sandwiched between the hydrophobic core andthe solvent-exposed surface. In addition to analyzing overallconservation hi the kinase family, we have also looked at conservationof its substrate and ATP binding sites. The ATP site is highlyconserved throughout the kinases, whereas the substrate bindingsite is more variable. The active site contains several positionswhich differ between the Ser/Thr and Tyr kinases and may beresponsible for discriminating between hydroxyl bearing sidechains. Using this information we propose a model for Tyr substratebinding to the catalytic domain of the epidermal growth factorreceptor (EGFR).  相似文献   

6.
Progression through the cell division cycle is controlled by a family of cyclin‐dependent kinases (CDKs), the activity of which depends on their binding to regulatory partners (cyclins A–H). Deregulation of the activity of CDKs has been associated with the development of infectious, neurodegenerative, and proliferative diseases such as Alzheimer's, Parkinson's, or cancer. Most cancer cells contain mutations in the pathways that control the activity of CDKs. This observation led this kinase family to become a central target for the development of new drugs for cancer therapy. A range of structurally diverse molecules has been shown to inhibit the activity of CDKs through their activity as ATP antagonists. Nevertheless, the ATP binding sites on CDKs are highly conserved, limiting the kinase specificity of these inhibitors. Various genetic and crystallographic approaches have provided essential information about the mechanism of formation and activation of CDK–cyclin complexes, providing new ways to implement novel research strategies toward the discovery of new, more effective and selective drugs. Herein we review the progress made in the development of ATP‐noncompetitive CDK–cyclin inhibitors.  相似文献   

7.
Kinase‐catalyzed protein phosphorylation is involved in a wide variety of cellular events. Development of methods to monitor phosphorylation is critical to understand cell biology. Our lab recently discovered kinase‐catalyzed biotinylation, where ATP‐biotin is utilized by kinases to label phosphopeptides or phosphoproteins with a biotin tag. To exploit kinase‐catalyzed biotinylation for phosphoprotein purification and identification in a cellular context, the susceptibility of the biotin tag to phosphatases was characterized. We found that the phosphorylbiotin group on peptide and protein substrates was relatively insensitive to protein phosphatases. To understand how phosphatase stability would impact phosphoproteomics research applications, kinase‐catalyzed biotinylation of cell lysates was performed in the presence of kinase or phosphatase inhibitors. We found that biotinylation with ATP‐biotin was sensitive to inhibitors, although with variable effects compared to ATP phosphorylation. The results suggest that kinase‐catalyzed biotinylation is well suited for phosphoproteomics studies, with particular utility towards monitoring low‐abundance phosphoproteins or characterizing the influence of inhibitor drugs on protein phosphorylation.  相似文献   

8.
Kinases present an attractive target for drug development, since they are involved in vital cellular processes and are implicated in a variety of diseases, such as cancer and diabetes. However, obtaining selectivity for a specific kinase over others is difficult since many current kinase inhibitors exclusively target the highly conserved kinase ATP binding domain. Previously, a microarray‐based strategy to discover so‐called bisubstrate‐based inhibitors that target the more specific peptide binding groove in addition to the ATP binding site was described. One attractive feature of this strategy is the opportunity to tune the selectivity of these inhibitors by systematically varying components. In an extension to this previous work, this study explores the potential of this guided selectivity modulation, leading to a series of inhibitors with different selectivity profiles against highly homologous protein kinase C (PKC) isozymes. Of the inhibitors studied, most exhibited improved potency and selectivity compared with their constituent parts. Furthermore, the selectivity was found to be tunable either through modification of the pseudosubstrate peptide (peptide binding groove) or the ATP‐competitive part (ATP binding site). In a number of cases, the selectivity of the construct could be predicted from the initial peptide substrate profiling experiment. Since this strategy is applicable to all kinase sets, it could be used to rapidly develop uniquely selective inhibitors.  相似文献   

9.
Kinase inhibitors are increasingly important in drug development. Because the majority of current inhibitors target the conserved ATP‐binding site, selectivity might become an important issue. This could be particularly problematic for the potential drug target protein kinase C (PKC), of which twelve isoforms with high homology exist in humans. A strategy to increase selectivity is to prepare bisubstrate‐based inhibitors that target the more selective peptide‐binding site in addition to the ATP‐binding site. In this paper a generally applicable, rapid methodology is presented to discover such bisubstrate‐based leads. Dynamic peptide microarrays were used to find peptide‐binding site inhibitors. These were linked with chemoselective click chemistry to an ATP‐binding site inhibitor, and this led to novel bisubstrate structures. The peptide microarrays were used to evaluate the resulting inhibitors. Thus, novel bisubstrate‐based inhibitors were obtained that were both more potent and selective compared to their constituent parts. The most promising inhibitor has nanomolar affinity and selectivity towards PKCθ amongst three isozymes.  相似文献   

10.
Mutant kinase kinetics : Protein kinases with enlarged ATP binding sites are increasingly being used as tools to probe the functioning signal transduction cascades. Using human cyclin‐dependent kinase 2 as a model system, we demonstrate that enlargement of the ATP binding site does not substantially alter either the catalysis kinetics nor substrate or phosphorylation site selection.

  相似文献   


11.
Polo‐like kinase 1 (PLK1) plays crucial functions in multiple stages of mitosis and is considered to be a potential drug target for cancer therapy. The functions of PLK1 are mediated by its N‐terminal kinase domain and C‐terminal polo‐box domain (PBD). Most inhibitors targeting the kinase domain of PLK1 have a selectivity issue because of a high degree of structural conservation within kinase domains of all protein kinases. Here, we combined virtual and experimental screenings to identify green tea catechins as potent inhibitors of the PLK1 PBD. Initially, (?)‐epigallocatechin, one of the main components of green tea polyphenols, was found to significantly block the binding of fluorescein‐labeled phosphopeptide to the PBD at a concentration of 10 μm. Next, additional catechins were evaluated for their dose‐dependent inhibition of the PBD and preliminary structure–activity relationships were derived. Cellular analysis further showed that catechins interfere with the proper subcellular localization of PLK1, lead to cell‐cycle arrest in the S and G2M phases, and induce growth inhibition of several human cancer cell types, such as breast adenocarcinoma (MCF7), lung adenocarcinoma (A549), and cervical adenocarcinoma (HeLa). Our data provides new insight into understanding the anticancer activities of green tea catechins.  相似文献   

12.
Apicomplexan parasites encompass several human‐ and animal‐pathogenic protozoans such as Plasmodium falciparum, Toxoplasma gondii, and Eimeria tenella. E. tenella causes coccidiosis, a disease that afflicts chickens, leading to tremendous economic losses to the global poultry industry. The considerable increase in drug resistance makes it necessary to develop new therapeutic strategies against this parasite. Cyclin‐dependent kinases (CDKs) are key molecules in cell‐cycle regulation and are therefore prominent target proteins in parasitic diseases. Bioinformatics analysis revealed four potential CDK‐like proteins, of which one—E. tenella CDK‐related kinase 2 (EtCRK2)—has already been characterized by gene cloning and expression. 1 By using the CDK‐specific inhibitor flavopiridol in EtCRK2 enzyme assays and schizont maturation assays (SMA), we could chemically validate CDK‐like proteins as potential drug targets. An X‐ray crystal structure of human CDK2 (HsCDK2) served as a template to build protein models of EtCRK2 by comparative homology modeling. Structural differences in the ATP binding site between EtCRK2 and HsCDK2, as well as chicken CDK3, were addressed for the optimization of selective ATP‐competitive inhibitors. Virtual screening and “wet‐bench” high‐throughput screening campaigns on large compound libraries resulted in an initial set of hit compounds. These compounds were further analyzed and characterized, leading to a set of four promising lead compounds for development as EtCRK2 inhibitors.  相似文献   

13.
Polo‐like kinase 1 (Plk1) is an evolutionarily conserved serine/threonine kinase, and its N‐terminal kinase domain (KD) controls cell signaling through phosphorylation. Inhibitors of Plk1 are potential anticancer drugs. Most known Plk1 KD inhibitors are ATP‐competitive compounds, which may suffer from low selectivity. In this study we discovered novel non‐ATP‐competitive Plk1 KD inhibitors by virtual screening and experimental studies. Potential binding sites in Plk1 KD were identified by using the protein binding site detection program Cavity. The identified site was subjected to molecular‐docking‐based virtual screening. The activities of top‐ranking compounds were evaluated by in vitro enzyme assay with full‐length Plk1 and direct binding assay with Plk1 KD. Several compounds showed inhibitory activity, and the most potent was found to be 3‐((2‐oxo‐2‐(thiophen‐2‐yl)ethyl)thio)‐6‐(pyridin‐3‐ylmethyl)‐1,2,4‐triazin‐5(4H)‐one (compound 4 ) with an IC50 value of 13.1±1.7 μm . Our work provides new insight into the design of kinase inhibitors that target non‐ATP binding sites.  相似文献   

14.
A series of 42 naturally occurring flavonoids and one flavonoid glucuronide were tested for their ability to inhibit p38α mitogen-activated protein kinase (p38α) and c-Jun-N-terminal kinase 3 (JNK3). Potent inhibitors with IC(50) values in the low micromolar range were identified. Structure-activity relationships were evaluated and the most promising compounds were docked into the ATP binding site of these kinases. Among the different classes of flavonoids, the flavonol group showed better inhibition of p38α. Of this class, kaempferol-7,4'-dimethylether was a potent p38α inhibitor, displaying 13-fold selectivity for p38α over JNK3. The flavone compounds without a 6-methoxy group preferentially inhibited JNK3. The flavone glycoside, luteolin-7-O-glycoside, was identified as a potent inhibitor with the greatest selectivity toward JNK3. In contrast, the flavanol compounds displayed similar inhibitory activities toward both kinases.  相似文献   

15.
The atypical protein kinase haspin is a key player in mitosis by catalysing the phosphorylation of Thr3 in histone H3, and thus ensuring the normal function of the chromosomal passenger complex. Here, we report the development of bisubstrate‐analogue inhibitors targeting haspin. The compounds were constructed by linking 5‐iodotubercidin to the N terminus of histone H3 peptide. The new conjugates show high affinity (sub‐nanomolar KD) towards haspin as well as slow kinetics of association and dissociation (residence time of several hours). This reflects a unique binding mode and translated into improved selectivity. The latter was confirmed in a biochemical binding/displacement assay with a panel of ten protein kinases, in a thermal shift assay with off‐targets of 5‐iodotubercidin (adenosine kinase and the Cdc2‐like kinase family) and in assay with spiked HeLa cell lysate.  相似文献   

16.
Bisubstrate inhibitors consist of two conjugated fragments, each targeted to a different binding site of a bisubstrate enzyme. The design of bisubstrate inhibitors presupposes the formation of the ternary complex in the course of the catalyzed reaction. The principle advantage of bisubstrate inhibitors is their ability to generate more interactions with the target enzyme that could result in improved affinity and selectivity of the conjugates, when compared with single‐site inhibitors. Among phosphotransferases, the approach was first successfully used for adenylate kinase in 1973. Since then, several types of bisubstrate inhibitors have been developed for protein kinases, including conjugates of peptides with nucleotides, adenosine derivatives and potent ATP‐competitive inhibitors. Earlier bisubstrate inhibitors had pharmacokinetic qualities that were unsuitable for cellular experiments and hence were mostly used for in vitro studies. The recently constructed conjugates of adenosine derivatives and D ‐arginine‐rich peptides (ARCs) possess high kinase affinity, high biological and chemical stability and good cell plasma membrane penetrative properties that enable their application in the regulation of cellular protein phosphorylation balances in cell and tissue experiments.  相似文献   

17.
Through phosphorylation of their substrate proteins, protein kinases are crucial for transducing cellular signals and orchestrating biological processes, including cell death and survival. Recent studies have revealed that kinases are involved in ferroptosis, an iron-dependent mode of cell death associated with toxic lipid peroxidation. Given that ferroptosis is being explored as an alternative strategy to eliminate apoptosis-resistant tumor cells, further characterization of ferroptosis-dependent kinase changes might aid in identifying novel druggable targets for protein kinase inhibitors in the context of cancer treatment. To this end, we performed a phosphopeptidome based kinase activity profiling of glucocorticoid-resistant multiple myeloma cells treated with either the apoptosis inducer staurosporine (STS) or ferroptosis inducer RSL3 and compared their kinome activity signatures. Our data demonstrate that both cell death mechanisms inhibit the activity of kinases classified into the CMGC and AGC families, with STS showing a broader spectrum of serine/threonine kinase inhibition. In contrast, RSL3 targets a significant number of tyrosine kinases, including key players of the B-cell receptor signaling pathway. Remarkably, additional kinase profiling of the anti-cancer agent withaferin A revealed considerable overlap with ferroptosis and apoptosis kinome activity, explaining why withaferin A can induce mixed ferroptotic and apoptotic cell death features. Altogether, we show that apoptotic and ferroptotic cell death induce different kinase signaling changes and that kinome profiling might become a valid approach to identify cell death chemosensitization modalities of novel anti-cancer agents.  相似文献   

18.
Tau‐tubulin kinase 1 (TTBK1) is a serine/threonine/tyrosine kinase that putatively phosphorylates residues including S422 in tau protein. Hyperphosphorylation of tau protein is the primary cause of tau pathology and neuronal death associated with Alzheimer’s disease. A library of 12 truncation variants comprising the TTBK1 kinase domain was screened for expression in Escherichia coli and insect cells. One variant (residues 14–313) could be purified, but mass spectrometric analysis revealed extensive phosphorylation of the protein. Co‐expression with lambda phosphatase in E. coli resulted in production of homogeneous, nonphosphorylated TTBK1. Binding of ATP and several compounds to TTBK1 was characterized by surface plasmon resonance. Crystal structures of TTBK1 in the unliganded form and in complex with ATP, and two high‐affinity ATP‐competitive inhibitors, 3‐[(6,7‐dimethoxyquinazolin‐4‐yl)amino]phenol ( 1 ) and methyl 2‐bromo‐5‐(7H‐pyrrolo[2,3‐d]pyrimidin‐4‐ylamino)benzoate ( 2 ), were elucidated. The structure revealed two clear basic patches near the ATP pocket providing an explanation of TTBK1 for phosphorylation‐primed substrates. Interestingly, compound 2 displayed slow binding kinetics to TTBK1, the structure of TTBK1 in complex with this compound revealed a reorganization of the L199–D200 peptide backbone conformation together with altered hydrogen bonding with compound 2 . These conformational changes necessary for the binding of compound 2 are likely the basis of the slow kinetics. This first TTBK1 structure can assist the discovery of novel inhibitors for the treatment of Alzheimer’s disease.  相似文献   

19.
Protein kinases control many cellular processes via the ATP-dependent phosphorylation of specific amino acids on target proteins. Despite the availability of the three-dimensional structures of a variety of protein kinases, it has been particularly difficult to explain how noncatalytic domains removed from the active site regulate catalytic function. In this review, we describe how solution methodologies complement the available structural data and help explain how protein kinases may utilize medium-to-long-range effects to regulate substrate phosphorylation. For illustration, two protein kinases, cAMP-dependent protein kinase and the C-terminal Src kinase, are presented as paradigms for the serine/threonine- and tyrosine-specific families. While active-site residues provide an optimal environment for fast phosphoryl group transfer in these and other kinases, the overall rate of protein phosphorylation is limited by nucleotide binding and associated structural changes. Hydrogen-deuterium exchange studies reveal that nucleotide binding induces changes that radiate from a central structural assembly composed of the catalytic loop, glycine-rich loop, and helix alpha C to unique peripheral regions inside and outside the kinase core. This collection of conserved and unique elements delivers information from the active site to distal regions and possibly provides information flow back to the active site. This "push-pull" hypothesis offers a means for understanding how protein kinases can be regulated by protein-protein interactions far from the active site.  相似文献   

20.
Protein phosphorylation is one of the most important mechanisms used for intracellular regulation in eukaryotic cells. Currently, one of the best-characterized protein kinases is the catalytic subunit of cAMP-dependent protein kinase or protein kinase A (PKA). PKA has the typical bilobular structure of kinases, with the active site consisting of a cleft between the two structural lobes. For full kinase activity, the catalytic subunit has to be phosphorylated. The catalytic subunit of PKA has two main phosphorylation sites: Thr197 and Ser338. Binding of ATP or inhibitors to the ATP site induces large structural changes. Here we describe the partial backbone assignment of the PKA catalytic domain by NMR spectroscopy, which represents the first NMR assignment of any protein kinase catalytic domain. Backbone resonance assignment for the 42 kDa protein was accomplished by an approach employing 1) triply ((2)H,(13)C,(15)N) labeled protein and classical NMR assignment experiments, 2) back-calculation of chemical shifts from known X-ray structures, 3) use of paramagnetic adenosine derivatives as spin-labels, and 4) selective amino acid labeling. Interpretation of chemical-shift perturbations allowed mapping of the interaction surface with the protein kinase inhibitor H7. Furthermore, structural conformational changes were observed by comparison of backbone amide shifts obtained by 2D (1)H,(15)N TROSY of an inactive Thr197Ala mutant with the wild-type enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号