首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We previously found that p97 ATPase inhibitors 2‐(2‐amino‐1H‐benzo[d]imidazol‐1‐yl)‐N‐benzyl‐8‐methoxyquinazolin‐4‐amine ( ML240 ) and 2‐(2H‐benzo[b][1,4]oxazin‐4(3H)‐yl)‐N‐benzyl‐5,6,7,8‐tetrahydroquinazolin‐4‐amine ( ML241 ) specifically target the D2 domain of wild‐type p97. In addition, one of the major p97 cofactors, p47, decreases their potencies by ~50‐fold. In contrast, N2,N4‐dibenzylquinazoline‐2,4‐diamine ( DBeQ ) targets both the D1 and D2 domains and shows only a four‐ to sixfold decrease in potency against the p97–p47 complex. To elucidate structure–activity relationships for the inhibitors, we screened 200 p97 inhibitor analogues for their ability to inhibit the ATPase activity of either or both of the D1 or D2 domains, as well for their effects on p47 potency. The selectivity of 29 of these compounds was further examined by eight‐dose titrations. Four compounds showed modest selectivity for inhibiting the ATPase activity of D1. Eleven compounds inhibited D2 with greater potencies, and four showed similar potencies against D1 and D2. p47 decreased the potencies of the majority of the compounds and increased the potencies of five compounds. These results highlight the possibility of developing domain‐selective and complex‐specific p97 inhibitors in order to further elucidate the physiological roles of p97 and its cofactors.  相似文献   

3.
To discover more potent p97 inhibitors, we carried out a structure–activity relationship study of the quinazoline scaffold previously identified from our HTS campaigns. Two improved inhibitors, ML240 and ML241, inhibit p97 ATPase with IC50 values of 100 nM . Both compounds inhibited degradation of a p97‐dependent but not a p97‐independent proteasome substrate in a dual‐reporter cell line. They also impaired the endoplasmic‐reticulum‐associated degradation (ERAD) pathway. Unexpectedly, ML240 potently stimulated accumulation of LC3‐II within minutes, inhibited cancer cell growth, and rapidly mobilized the executioner caspases 3 and 7, whereas ML241 did not. The behavior of ML240 suggests that disruption of the protein homeostasis function of p97 leads to more rapid activation of apoptosis than is observed with a proteasome inhibitor. Further characterization revealed that ML240 has broad antiproliferative activity toward the NCI‐60 panel of cancer cell lines, but slightly lower activity toward normal cells. ML240 also synergizes with the proteasome inhibitor MG132 to kill multiple colon cancer cell lines. Meanwhile, both probes have low off‐target activity toward a panel of protein kinases and central nervous system targets. Our results nominate ML240 as a promising starting point for the development of a novel agent for the chemotherapy of cancer, and provide a rationale for developing pathway‐specific p97 inhibitors.  相似文献   

4.
Abstract : A major challenge of targeted cancer therapy is the selection for drug-resistant mutations in tumor cells leading to loss of treatment effectiveness. p97/VCP is central regulator of protein homeostasis and a promising anticancer target because of its vital role in cell growth and survival. One ATP-competitive p97 inhibitor, CB-5083, has entered clinical trials. Selective pressure on HCT116 cells dosed with CB-5083 identified five different resistant mutants. Identification of p97 inhibitors with different mechanisms of action would offer the potential to overcome this class of resistance mutations. Our results demonstrate that two CB-5083 resistant p97 mutants, N660 K and T688 A, were also resistant to several other ATP-competitive p97 inhibitors, whereas inhibition by two allosteric p97 inhibitors NMS-873 and UPCDC-30245 were unaffected by these mutations. We also established a CB-5083 resistant cell line that harbors a new p97 double mutation (D649 A/T688 A). While CB-5083, NMS-873, and UPCDC-30245 all effectively inhibited proliferation of the parental HCT116 cell line, NMS-873 and UPCDC-30245 were 30-fold more potent in inhibiting the CB-5083 resistant D649 A/T688 A double mutant than CB-5083. Our results suggest that allosteric p97 inhibitors are promising alternatives when resistance to ATP-competitive p97 inhibitors arises during anticancer treatment.  相似文献   

5.
A novel series of optically active molecules based on a 4‐(2‐(benzhydryloxy)ethyl)‐1‐((R)‐2‐hydroxy‐2‐phenylethyl)‐piperidin‐3‐ol template were developed. Depending on stereochemistry, the compounds exhibit various degrees of affinity for three dopamine, serotonin, and norepinephrine transporters. These molecules have the potential for treating several neurological disorders such as drug abuse, depression, and attention deficit hyperactivity disorder.

  相似文献   


6.
Animal models suggest that the chemokine ligand 2/CC‐chemokine receptor 2 (CCL2/CCR2) axis plays an important role in the development of inflammatory diseases. However, CCR2 antagonists have failed in clinical trials because of a lack of efficacy. We previously described a new approach for the design of CCR2 antagonists by the use of structure–kinetics relationships (SKRs). Herein we report new findings on the structure–affinity relationships (SARs) and SKRs of the reference compound MK‐0483, its diastereomers, and its structural analogues as CCR2 antagonists. The SARs of the 4‐arylpiperidine group suggest that lipophilic hydrogen‐bond‐accepting substituents at the 3‐position are favorable. However, the SKRs suggest that a lipophilic group with a certain size is desired [e.g., 3‐Br: Ki=2.8 nM , residence time (tres)=243 min; 3‐iPr: Ki=3.6 nM , tres=266 min]. Alternatively, additional substituents and further optimization of the molecule, while keeping a carboxylic acid at the 3‐position, can also prolong tres; this was most prominently observed in MK‐0483 (Ki=1.2 nM , tres=724 min) and a close analogue (Ki=7.8 nM ) with a short residence time.  相似文献   

7.
8.
Blocking the 2‐C‐methyl‐d ‐erythrithol‐4‐phosphate pathway for isoprenoid biosynthesis offers new ways to inhibit the growth of Plasmodium spp. Fosmidomycin [(3‐(N‐hydroxyformamido)propyl)phosphonic acid, 1 ] and its acetyl homologue FR‐900098 [(3‐(N‐hydroxyacetamido)propyl)phosphonic acid, 2 ] potently inhibit 1‐deoxy‐d ‐xylulose‐5‐phosphate reductoisomerase (Dxr), a key enzyme in this biosynthetic pathway. Arylpropyl substituents were introduced at the β‐position of the hydroxamate analogue of 2 to study changes in lipophilicity, as well as electronic and steric properties. The potency of several new compounds on the P. falciparum enzyme approaches that of 1 and 2 . Activities against the enzyme and parasite correlate well, supporting the mode of action. Seven X‐ray structures show that all of the new arylpropyl substituents displace a key tryptophan residue of the active‐site flap, which had made favorable interactions with 1 and 2 . Plasticity of the flap allows substituents to be accommodated in many ways; in most cases, the flap is largely disordered. Compounds can be separated into two classes based on whether the substituent on the aromatic ring is at the meta or para position. Generally, meta‐substituted compounds are better inhibitors, and in both classes, smaller size is linked to better potency.  相似文献   

9.
Conformational restriction of naftopidil led to the discovery of a new class of ligands with a 1,3‐dioxolane (1,3‐oxathiolane, 1,3‐dithiolane) structure that bind to α1 adrenoceptor subtypes and 5‐HT1A receptors. Adequate structural modifications address the selectivity toward one or the other receptor system.

  相似文献   


10.
Subtype‐selective ligands are of great interest to the scientific community, as they provide a tool for investigating the function of one receptor or transporter subtype when functioning in its native environment. Several 4‐substituted (S)‐glutamate (Glu) analogues were synthesized, and altogether this approach has provided important insight into the structure–activity relationships (SAR) for ionotropic and metabotropic glutamate receptors (iGluRs and mGluRs), as well as the excitatory amino acid transporters (EAATs). In this work, three 4,4‐disubstituted Glu analogues 1 – 3 , which are hybrid structures of important 4‐substituted Glu analogues 4 – 8 , were investigated at iGluRs and EAATs. Collectively, their pharmacological profiles add new and valuable information to the SAR for the iGluRs and EAAT1–3.  相似文献   

11.
12.
Five novel N‐substituted demethylvancomycin derivatives were rationally designed and synthesized by using a structure‐based approach. The in vitro antibacterial activities against methicillin‐resistant Staphylococcus aureus (MRSA), gentamicin‐resistant Enterococcus faecalis (GRE), methicillin‐resistant Streptococcus pneumoniae (MRS), and vancomycin‐resistant Enterococcus faecalis (VRE) were evaluated. One of the compounds, N‐(6‐phenylheptyl)demethylvancomycin ( 12 a ), was found to exhibit more potent antibacterial activity than vancomycin and demethylvancomycin. Compound 12 a was also found to be ~18‐fold more efficacious than vancomycin against MRSA; however, the two compounds were found to have similar efficacy against MRS. Furthermore, compound 12 a exhibited a favorable pharmacokinetic profile with a half‐life of 5.11±0.52 h, which is longer than that of vancomycin (4.3±1.9 h). These results suggest that 12 a is a promising antibacterial drug candidate for further preclinical evaluation.  相似文献   

13.
A novel series of diarylpyrimidine analogues (DAPYs) featuring a naphthyl moiety at the C4 position were designed, with all compounds exhibiting strong activity against wild‐type HIV‐1.

  相似文献   


14.
15.
The human host defence peptide LL‐37 is a broad‐spectrum antibiotic with immunomodulatory functions. Residues 18–29 in LL‐37 have previously been identified as a minimal peptide (KR‐12) that retains antibacterial activity with decreased cytotoxicity. In this study, analogues of KR‐12 were generated by Ala and Lys scans to identify key elements for activity. These were tested against a panel of human pathogens and for membrane permeabilisation on liposomes. Replacements of hydrophobic and cationic residues with Ala were detrimental for antibiotic potency. Substitutions by Lys increased activity, as long as the increase in cationic density did not disrupt the amphiphilic disposition of the helical structure. Importantly, substitutions showed differential effects against different organisms. Replacement of Gln5 with Lys and Asp9 with Ala or Lys improved the broad‐spectrum activity most, each resulting in up to an eightfold increase in potency against Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans. The improved analogues displayed no significant toxicity against human cells, and thus, KR‐12 is a tuneable template for antibiotic development.  相似文献   

16.
Herein we describe the synthesis and structure–activity relationships of 3‐aminocyclohex‐2‐en‐1‐one derivatives as novel chemokine receptor 2 (CXCR2) antagonists. Thirteen out of 44 derivatives were found to inhibit CXCR2 downstream signaling in a Tango assay specific for CXCR2, with IC50 values less than 10 μm . In silico ADMET prediction suggests that all active compounds possess drug‐like properties. None of these compounds show significant cytotoxicity, suggesting their potential application in inflammatory mediated diseases. A structure–activity relationship (SAR) map has been generated to gain better understanding of their binding mechanism to guide further optimization of these new CXCR2 antagonists.  相似文献   

17.
To explore the potential of aporphine alkaloids, a novel series of functionalized aporphine analogues with alkoxy (OCH3, OC2H5, OC3H7) functional groups at C1/C2 of ring A and an acyl (COCH3 and COPh) or phenylsulfonyl (SO2Ph and SO2C6H4‐3‐CH3) functionality at the N6 position of ring B of the aporphine scaffold were synthesized and evaluated for their arachidonic acid (AA)‐induced antiplatelet aggregation inhibitory activity and 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) free‐radical‐scavenging antioxidant activity, with acetylsalicylic acid and ascorbic acid as standard references, respectively. The preliminary structure–activity relationship related to AA‐induced platelet aggregation inhibitory activity results showed that the aporphine analogues 1‐[1,2,9,10‐tetramethoxy‐6a,7‐dihydro‐4H‐dibenzo[de,g]quinolin‐6(5H)‐yl]ethanone and 1‐[2‐(benzyloxy)‐1,9,10‐trimethoxy‐6a,7‐dihydro‐4H‐dibenzo[de,g]quinolin‐6(5H)‐yl]ethanone to be the best compounds of the series. Moreover, the DPPH free‐radical‐scavenging antioxidant activity results demonstrated that the aporphine analogues 1,2,9,10‐tetramethoxy‐6‐(methylsulfonyl)‐5,6,6a,7‐tetrahydro‐4H‐dibenzo[de,g]quinoline, 2‐ethoxy‐1,9,10‐trimethoxy‐6‐(methylsulfonyl)‐5,6,6a,7‐tetrahydro‐4H‐dibenzo[de,g]quinoline, 1‐ethoxy‐2,9,10‐trimethoxy‐6‐(methylsulfonyl)‐5,6,6a,7‐tetrahydro‐4H‐dibenzo[de,g]quinoline, 2,9,10‐trimethoxy‐6‐(methylsulfonyl)‐1‐propoxy‐5,6,6a,7‐tetrahydro‐4H‐dibenzo[de,g]quinoline, and 1‐(benzyloxy)‐2,9,10‐trimethoxy‐6‐(methylsulfonyl)‐5,6,6a,7‐tetrahydro‐4H‐dibenzo[de,g]quinoline were the best compounds of the series. Moreover, in silico molecular docking simulation studies of the active analogues were also performed.  相似文献   

18.
Competitive glycosidase inhibitors are generally sugar mimics that are costly and tedious to obtain because they require challenging and elongated chemical synthesis, which must be stereo‐ and regiocontrolled. Here, we show that readily accessible achiral (E)‐1‐phenyl‐3‐(4‐strylphenyl)ureas are potent competitive α‐glucosidase inhibitors. A systematic synthesis study shows that the 1‐phenyl moiety on the urea is critical for ensuring competitive inhibition, and substituents on both terminal phenyl groups contribute to inhibition potency. The most potent inhibitor, compound 12 (IC50=8.4 μM , Ki=3.2 μM ), manifested a simple slow‐binding inhibition profile for α‐glucosidase with the kinetic parameters k3=0.005256 μM ?1 min?1, k4=0.003024 min?1, and ${K{{{\rm app}\hfill \atop {\rm i}\hfill}}}$ =0.5753 μM .  相似文献   

19.
Combretastatin A‐4 derivatives : A series of combretastatin A‐4‐derived 1‐benzyl‐4,5,6‐trimethoxyindoles was designed and prepared as a novel class of potent antimitotic agents acting through the colchicine binding site on the microtubule.

  相似文献   


20.
Treating African trypanosomiasis : The synthesis and biological evaluation of novel 1‐alkyloxy and 1‐benzyloxyadamantano 2‐guanylhydrazones, their 1‐dioxa congeners and two 1‐benzyladamantano 2‐guanylhydrazones is reported. Preliminary structure–activity relationship data were elucidated and lead compounds suitable for further optimization were discovered.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号