首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
New method of synthesis of water‐soluble polymer‐drug conjugates, exhibiting remarkable anticancer activity in mice models, has been developed. In the conjugates, an anticancer drug doxorubicin (DOX) is attached to a polymer carrier based on N‐(2‐hydroxypropyl)methacrylamide (HPMA) copolymer via a hydrolytically labile hydrazone bond. New methacrylamide‐type comonomers, containing either hydrazide group or hydrazon of DOX, were used for copolymerization with HPMA. In contrast to the synthetic procedure described earlier the new method is simpler, cheaper, and results in a better‐defined conjugate structure. The conjugates are fairly stable in buffer at pH 7.4 (model of blood stream) but release DOX under mild acid conditions modeling the tumor microenvironment. The conjugates showed significant in vivo antitumor activity in treatment of T‐cell lymphoma EL‐4 bearing mice with up to 100% long‐term survivors. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

2.
Copolymeric nanohydrogels based on N‐isopropylacrylamide, N‐(pyridin‐4‐ylmethyl)acrylamide and tert‐butyl‐2‐acrylamidoethyl carbamate, synthesized by microemulsion polymerization, were characterized using Fourier transform infrared spectroscopy and their size (38–52 nm) determined using quasielastic light scattering. Folic acid was covalently attached to the nanohydrogels (1.40 ± 0.07 mmol g?1). Tamoxifen (6.7 ± 0.2–7.3 ± 1.2 µg TMX mg?1 nanohydrogel), a hydrophobic anticancer drug, and 5‐fluorouracil (7.7 ± 0.7–10.14 ± 1.75 µg 5‐FU mg?1 nanohydrogel), a hydrophilic anticancer drug, were loaded into the nanohydrogels. Maximum in vitro TMX release (77–84% of loaded drug) depended on interactions of the drug with hydrophobic clusters of the nanogels; however, no nanogel/5‐FU interactions allowed total release of the loaded drug. The cytotoxicity of unloaded nanohydrogels in MCF7, T47D and HeLa cells was low. Cell uptake of nanogels without bound folic acid took place in the three cell types by unspecific internalization in a time‐dependent process. Cell uptake increased for folic acid‐targeted nanohydrogels in T47D and HeLa cells, which have folate receptors. The administration of 10 and 30 µmol L?1 TMX by TMX‐loaded nanogels and 10 µmol L?1 5‐FU by 5‐FU‐loaded nanogels was effective on the three cell types, and the best results were obtained for folic acid‐targeted nanohydrogels. Copyright © 2012 Society of Chemical Industry  相似文献   

3.
This study presented the investigations on the synthesis of a novel biodegradable block copolymer of pluronic‐b‐poly(L ‐lysine) (pluronic‐b‐PLL), which combined the characteristics of aliphatic polyester and poly(amino acids). The synthesis work started with end‐capping of pluronic with Nt‐butoxycarbonyl‐L ‐phenylalanine using dicyclohexylcarbodiimide in the presence of 4‐dimethylaminopyridine, followed by a deprotection process to obtain the amino‐terminated pluronic; the new primary amino group in the modified pluronic initiated ring‐opening polymerization of amino acid N‐carboxyanhydride, which afforded the pluronic‐b‐poly(Nε‐(Z)‐L ‐lysine) block copolymer. Finally, removal of the side‐chain Nε‐(carbonybenzoxy) end protecting groups yields the block copolymer of pluronic‐b‐PLL. The products were characterized by 1H‐NMR, FTIR, DSC, and GPC. The block copolymer micelle containing the anticancer drug paclitaxel was prepared by the double emulsion method. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Undecenoic acid functionalized thermo/pH responsive microgels, poly(N‐vinylcaprolactam‐co‐undecenoic acid) [poly(VCL‐co‐UA)], were synthesized by precipitation emulsion copolymerization. The microgels exhibit reversible thermo/pH responsive phase transition behavior, which can be tuned by varying the monomer feed ratio. The lower critical solution temperatures (LCSTs) of the materials are close to body temperature. As a result, when temperatures rise above ca. 37°C, a rapid thermal gelation process occurs, accompanied by a phase transition, resulting in expulsion of encapsulated compound. In vitro experiment evaluated its applicability as a drug carrier for controlled release of an anticancer agent (doxorubicin) and showed that the drug encapsulation efficiency (EE), releasing rate, and kinetics are dependent on the temperature and pH value as expected. Minimal cytotoxicity of the microgels was observed by a cytotoxicity assay using 3T3 fibroblast cells. Our finding suggests that the poly(VCL‐co‐UA) based microgels may be considered a promising candidate for temperature or pH‐controlled delivery of anticancer drugs. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41146.  相似文献   

5.
Chromium complexes with N,N,N‐tridentate ligands, LCrCl3 (L = 2,6‐bis{(4S)‐(?)‐isopropyl‐2‐oxazolin‐2‐yl}pyridine ( 1 ), 2,2′:6′,2″‐terpyridine ( 2 ), and 4,4′,4″‐tri‐tert‐butyl‐2,2′:6′,2″‐terpyridine ( 3 )), were prepared. The structures of 1 and 2 were determined by X‐ray crystallography. Upon activation with modified methylaluminoxane (MMAO), 1 catalyzed the polymerization of 1,3‐butadiene, while 2 and 3 was inactive. The obtained poly(1,3‐butadiene) obtained with 1 ‐MMAO was found to have completely trans‐1,4 structure. The 1 ‐MMAO system also showed catalytic activity for the polymerization of isoprene to give polyisoprene with trans‐1,4 (68%) and cis‐1,4 (32%) structure. Copyright © 2011 Society of Chemical Industry  相似文献   

6.
To develop a theranostic agent for diagnostic imaging and treatment of  hepatocellular carcinoma (HCC), poly(HPMA)‐APMA‐DTPA‐99mTc (HPMA: N‐(2‐hydroxypropyl methacrylamide; APMA: N‐(3‐aminopropyl)methacrylamide; DTPA: diethylenetriaminepentaacetic acid) and DTPA‐99mTc were synthesized and characterized, and their HCC targeting was tested by in vitro cellular uptake and in vivo tumor imaging in this study. Radioactivity of HCC cells incubated with poly(HPMA)‐APMA‐DTPA‐99mTc was significant higher (16.40%) than that of the cells incubated with DTPA‐99mTc (2.98%). Scintigraphic images of HCC in mice obtained at 8 h after injection of poly(HPMA)‐APMA‐DTPA‐99mTc showed increased radioactivity compared with that in mice injected with DTPA‐99mTc. The results of postmortem tissue radioactivity assay demonstrated higher radioactivity of HCC tumor tissues (2.69 ± 0.15% ID/g) from the tumor‐bearing mice injected with poly(HPMA)‐APMA‐DTPA‐99mTc compared with that of HCC tumor tissues in the tumor‐bearing mice injected with DTPA‐99mTc (0.83 ± 0.03 %ID/g), (P <0.001). These results first directly confirm the significant passive hepatocellular tumor targeting of HPMA copolymer. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

7.
Organometallic conjugates consisting of a gold(I) N‐heterocyclic carbene (NHC) moiety and a naphthalimide were prepared and investigated as cytotoxic agents that interact with both DNA and the disulfide reductase enzyme thioredoxin reductase (TrxR). The complexes were potent DNA intercalators related to their naphthalimide partial structure, inhibited TrxR as a consequence of the incorporation of the gold(I) moiety, and triggered efficient cytotoxic effects in MCF‐7 breast and HT‐29 colon adenocarcinoma cells. Strong effects on tumor cell metabolism were noted for the most cytotoxic complex, chlorido[1‐(3′‐(4′′‐ethylthio‐1′′,8′′‐naphthalimid‐N′′‐yl))‐propyl‐3‐methyl‐imidazol‐2‐ylidene]gold(I) ( 4 d ). In conclusion, the conjugation of naphthalimides with gold(I) NHC moieties provided a useful strategy for the design of bioorganometallic anticancer agents with multiple modes of action.  相似文献   

8.
N‐Chlorothiosulfonamides have been used to modify ethylene‐propylene‐diene rubber (EPDM) to enhance the compatibility of EPDM in, e.g., natural rubber (NR)/butadiene rubber (BR)/EPDM blends for ozone resistance. N‐Chlorothio‐N‐butyl‐benzenesulfonamide (CTBBS) was selected as a representative for N‐chlorothiosulfonamides. In this study, we found that CTBBS behaves differently with various types of EPDM. Three types of EPDM were selected: ethylidene norbornene (ENB)‐EPDM, hexadiene (HD)‐EPDM, and dicyclopentadiene (DCPD)‐EPDM. HD‐EPDM showed the greatest effectiveness toward CTBBS‐modification. However, this EPDM is not commercially available anymore. On the opposite side, DCPD‐EPDM showed the lowest reactivity so that almost no modification could be realized. The result with ENB‐EPDM was, that upon application of CTBBS to ENB‐EPDM, gelation occurred and, therefore, a low amount of modification was achieved. With the limited modification efficiency for ENB‐EPDM, there is no significant improvement when applying the modified ENB‐EPDM into NR/BR/EPDM blends. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
Noscapine is a phthalideisoquinoline alkaloid isolated from the opium poppy Papaver somniferum. It has long been used as an antitussive agent, but has more recently been found to possess microtubule‐modulating properties and anticancer activity. Herein we report the synthesis and pharmacological evaluation of a series of 6′‐substituted noscapine derivatives. To underpin this structure–activity study, an efficient synthesis of N‐nornoscapine and its subsequent reduction to the cyclic ether derivative of N‐nornoscapine was developed. Reaction of the latter with a range of alkyl halides, acid chlorides, isocyanates, thioisocyanates, and chloroformate reagents resulted in the formation of the corresponding N‐alkyl, N‐acyl, N‐carbamoyl, N‐thiocarbamoyl, and N‐carbamate derivatives, respectively. The ability of these compounds to inhibit cell proliferation was assessed in cell‐cycle cytotoxicity assays using prostate cancer (PC3), breast cancer (MCF‐7), and colon cancer (Caco‐2) cell lines. Compounds that showed activity in the cell‐cycle assay were further evaluated in cell viability assays using PC3 and MCF‐7 cells.  相似文献   

10.
A series of 3,5‐bis(benzylidene)‐4‐piperidones 3 were converted into the corresponding 3,5‐bis(benzylidene)‐1‐phosphono‐4‐piperidones 5 via diethyl esters 4 . The analogues in series 4 and 5 displayed marked growth inhibitory properties toward human Molt 4/C8 and CEM T‐lymphocytes as well as murine leukemia L1210 cells. In general, the N‐phosphono compounds 5 , which are more hydrophilic than the analogues in series 3 and 4 , were the most potent cluster of cytotoxins, and, in particular, 3,5‐bis‐(2‐nitrobenzylidene)‐1‐phosphono‐4‐piperidone 5 g had an average IC50 value of 34 nM toward the two T‐lymphocyte cell lines. Four of the compounds displayed potent cytotoxicity toward a panel of nearly 60 human tumor cell lines, and nanomolar IC50 values were observed in a number of cases. The mode of action of 5 g includes the induction of apoptosis and inhibition of cellular respiration. Most of the members of series 4 as well as several analogues in series 5 are potent multi‐drug resistance (MDR) reverting compounds. Various correlations were noted between certain molecular features of series 4 and 5 and cytotoxic properties, affording some guidelines in expanding this study.  相似文献   

11.
Effective antibacterial modification of poly(ethylene terephthalate) (PET) was achieved by forming a surface thermoplastic semi‐interpenetrating network of polyacrylamide (PAM) and PET, followed by converting the immobilized amides to N‐halamine. The regenerability of N‐halamine on PAM‐modified PET was significantly influenced by the cross‐linkers used to form the network. Through Fourier transform infrared spectroscopy and nitrogen content analysis of the materials for up to 29 regeneration cycles, it was found that breaking down of the PAM network in chlorination accounted for the loss of regenerability. The relationship between antibacterial efficacy and N‐halamine concentration was also studied. Compared with N,N′‐methylenebisacrylamide and 2‐ethyleneglycol diacrylate, cross‐linker divinylbenzene can generate more durable PAM network. After 29 regeneration cycles, the PAM‐divinylbenzene network‐modified PET was still able to provide 100% reduction of healthcare‐associated methicillin‐resistant Staphylococcus aureus in 20 min contact. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Summary: Polyelectrolyte hydrogels containing diprotic acid moieties sensitive to ionic strength changes of the swelling medium were synthesized from N,N‐diethylaminoethyl methacrylate (DEAEMA), N‐vinyl‐2‐pyrrolidone (VP) and itaconic acid (IA) by using ammonium persulfate (APS) as a free radical initiator in the presence of the cross‐linker, methylenebisacrylamide (MBAAm). The swelling behavior of the ionic poly[(N,N‐diethylaminoethyl methacrylate)‐co‐(N‐vinyl‐2‐pyrrolidone)] [P(DEAEMA/VP)] hydrogels were investigated in pure water; in NaCI solutions with pH 4 and 9; and in water‐acetone mixtures depending on the IA content in the hydrogel. The average molecular mass between cross‐links ( ) and polymer‐solvent interaction parameter (χ) of the hydrogels were determined from equilibrium swelling values. The pulsatile swelling behavior was also observed in response to solvent changes between the solution in water and in acetone. The equilibrium swelling ratio of these hydrogels was basically unaffected with change in temperature. The swelling variations were explained according to the swelling theory based on the hydrogel chemical structure.

Pulsatile swelling behavior of ionic P(DEAEMA/VP) hydrogels in response to solvent changes between water and acetone at 25 °C.  相似文献   


13.
This paper reports the structural modification of Hoveyda–Grubbs complexes through the introduction of either an N‐alkyl‐N′‐mesityl heterocyclic carbene, an N‐alkyl‐N′‐(2,6‐diisopropylphenyl) heterocyclic carbene, or an N‐alkyl‐N′‐alkyl heterocyclic carbene. The effect of the modified N‐heterocyclic carbene (NHC) ligand was investigated in representative ring‐opening metathesis polymerization (ROMP), ring‐closing metathesis (RCM) and cross metathesis (CM) reactions. A pronounced influence on both catalyst activity and selectivity was found to be exerted by the NHC amino substituents, which emphasizes that a rigorously selected steric environment is critical in olefin metathesis catalyst design.  相似文献   

14.
A pH‐sensitive drug targeting system for solid tumors was established based on N‐isopropylacrylamide (NIPAAm) and chitosan conjugates. The mass ratio of NIPAAm and chitosan was adjusted to obtain super pH‐sensitive characteristic and the structure was studied by using Fourier transform infrared spectroscope to confirm the successful synthesis of the nanoparticles. The pH‐sensitive and drug release characteristics in vitro were studied as well. Human lung cancer cells A‐549 and human fibroblast were used to test the biocompatibility of blank and Podophyllotoxin (POD) loaded nanoparticles further to certificate the reliability of targeting acidic tumor extracellular pH. Results revealed that when charge ratio between NIPAAm and CS achieve 4:1(w/w), the drug‐loaded nanoparticles, which diameters ranged from 50 to 150 nm, exhibited super pH‐sensitive responses to tumor pH. Encapsulation and loading efficiencies were 63.7% and 2.4%, respectively. The cumulative release rate of POD, which significantly enhanced at pH 6.8 while decreased rapidly either below pH 6.5 or above pH 6.9 at 37°C. At pH 6.8, POD‐loaded nanoparticles showed cytotoxicity in MTT test and fluorescence microscopic study, comparable to that of free POD at the same POD concentrations, whereas at pH 7.4 there was little cytotoxicity at the tested concentration range. Thereby, the atoxic PNIPAAm‐g‐chitosan nanoparticle has the potentiality as a novel anticancer drugs carrier. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

15.
Blood filtration requires a high removal ratio of leukocytes and with simultaneous high recovery ratio of platelets and other beneficial components. Problems are often encountered with blood filter materials in terms of high platelet loss. Zwitterions such as phosphorylcholine, sulfobetaine and carboxybetaine show effective resistance against protein adsorption and platelet adhesion. The study reported was aimed at achieving surface modification of poly(butylene terephthalate) non‐woven fabric (PBTNF) using UV radiation‐induced graft copolymerization of a zwitterionic sulfobetaine, N‐(3‐sulfopropyl)‐N‐methacroyloxyethyl‐N,N‐dimethylammonium betaine (SMDB), in order to improve the wettability and platelet recovery ratio of the PBTNF. Attenuated total reflection Fourier transform infrared and X‐ray photoelectron spectroscopy results showed that SMDB was successfully grafted onto the PBTNF. Photoinitiator concentration, monomer concentration and UV irradiation time affected markedly the degree of grafting. Critical wetting surface tension, water wetting time and hemolysis tests showed an improvement in wettability and blood compatibility as a result of graft copolymerization of SMDB. A blood filter material composed of SMDB‐modified PBTNF reduced platelet adhesion and had higher platelet recovery compared to poly(acrylic acid)‐modified PBTNF. It was found that SMDB monomer was successfully grafted onto PBTNF using UV radiation. The degree of grafting of SMDB could be controlled by varying the photoinitiator concentration, monomer concentration and UV irradiation time. SMDB‐modified PBTNF showed significant improvement in wettability and blood compatibility. The zwitterionic structure of SMDB is resistant to platelet adhesion. The SMDB‐modified PBTNF could be a candidate for a blood filter material and in other medical applications. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
γ‐Glutamylcyclotransferase (GGCT) depletion inhibits cancer cell proliferation. However, whether the enzymatic activity of GGCT is critical for the regulation of cancer cell growth remains unclear. In this study, a novel diester‐type cell‐permeable prodrug, pro‐GA, was developed based on the structure of N‐glutaryl‐l ‐alanine (GA), by structure optimization using temporary fluorophore‐tagged prodrug candidates. The antiproliferative activity of pro‐GA was demonstrated using GGCT‐overexpressing NIH‐3T3 cells and human cancer cells including MCF7, HL‐60, and PC3 cells. By contrast, normal cells were not significantly affected by pro‐GA treatment. Moreover, pro‐GA administration exhibited anticancer effects in a xenograft model using immunocompromised mice inoculated with PC3 cells. These results indicate that the enzymatic activity of GGCT accelerates tumor growth and that GGCT inhibition is a promising therapeutic strategy for the treatment of GGCT‐overexpressing tumors.  相似文献   

17.
pH‐sensitive nanogels (NGs) based on poly(aspartic acid‐graft‐imidazole)‐poly(ethylene glycol) were developed using linear PEG with different molecular weights (2000 and 4000 Da) as crosslinkers. The pH‐sensitive NGs showed reversible size changes during continuously alternating pH changes. The anticancer treatment potential of pH‐sensitive NGs was studied using a model drug, irinotecan (IRI). IRI‐loaded NGs (ILNs) showed different drug release kinetics in acidic versus neutral pH, in addition to pH‐dependent cytotoxicity. Due to its longer crosslinker, ILN 4 (crosslinked with PEG 4000) showed faster IRI release and a greater magnitude of IRI release than ILN 2 (crosslinked with PEG 2000), resulting in greater cytotoxicity against HCT 116 colorectal cancer cells. These pH‐sensitive NGs could potentially be used in cancer treatment by mediating the accumulation and release of IRI from ILNs in the acidic tumor environment and by reducing systemic toxicity due to reversible swelling–shrinkage. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46268.  相似文献   

18.
A recombinant Escherichia coli expressing P450pyr monooxygenase of Sphingomonas sp. HXN‐200 was developed as a useful biocatalyst for regio‐ and stereoselective hydroxylations, with no side reaction and easy cell growth. The resting E. coli cells showed an activity of 4.1 U/g cdw and 9.9 U/g cdw for the hydroxylation of N‐benzylpyrrolidin‐2‐one 1 and N‐benzyloxycarbonylpyrrolidine 3 , respectively, being as active as the wide‐type strain. Biohydroxylation of N‐benzylpyrrolidin‐2‐one 1 with the resting cells gave (S)‐N‐benzyl‐4‐hydroxypyrrolidin‐2‐one 2 in >99% ee and 10.8 mM, a 2.6 times increase of product concentration in comparison with the wild‐type strain. Biohydroxylation of Ntert‐butoxycarbonylpiperidin‐2‐one 5 , N‐benzylpiperidine 7 and Ntert‐butoxycarbonylazetidine 9 with the E. coli cells afforded the corresponding 4‐hydroxypiperidin‐2‐one 6 , 4‐hydroxypiperidine 8 , and 3‐hydroxyazetidine 10 in 14 mM, 17 mM, and 21 mM, respectively. Moreover, hydroxylation of (−)‐β‐pinene 11 with the recombinant E. coli cells showed excellent regio‐ and stereoselectivity and gave (1R)‐trans‐pinocarveol 12 in 82% yield and 4.1 mM, which is over 200 times higher than that obtained with the best biocatalytic system known thus far. The recombinant strain was also able to hydroxylate other types of substrates with unique selectivity: biohydroxylation of norbornane 13 gave exo‐norbornaeol 14 , with exo/endo selectivity of 95%; tetralin 15 and 6‐methoxytetralin 17 were hydroxylated at the non‐activated 2‐position, for the first time, with regioselectivities of 83–84%.  相似文献   

19.
Hydrosilylation of nadic anhydride with tetramethyl disiloxane yielded 5,5′‐(1,1,3,3‐tetramethyl disiloxane‐1,3‐diyl)‐bis‐norborane‐2,3‐dicarboxylic anhydride (I), which further reacted with 4‐aminophenol to give N,N′‐bis(4‐hydroxyphenyl)‐5,5′‐bis‐(1,1,3,3‐tetramethyl disiloxane‐1,3‐diyl)‐bis‐norborane‐2,3‐dicarboximide (II). Epoxidation of II with excess epichlorohydrin formed a siloxane‐ and imide‐modified epoxy oligomer (ie diglycidyl ether of N,N′‐bis(4‐hydroxyphenyl)‐5,5′‐bis(1,1,3,3‐tetramethyl disiloxane‐1,3‐diyl)‐bis‐norborane‐2,3‐dicarboximide) (III). Equivalent ratios of III/I of 1/1 and 1/0.8 were prepared and cured to produce crosslinked materials. Thermal mechanical and dynamic mechanical properties were investigated by TMA and DMA, respectively. It was noted that each of these two materials showed a glass transition temperature (Tg) higher than 160 °C with moderate moduli. The thermal degradation kinetics was studied with dynamic thermogravimetric analysis (TGA) and the estimated apparent activation energies were 111.4 kJ mol?1 (in N2), 117.1 kJ mol?1 (in air) for III/I = 1/0.8, and 149.2 kJ mol?1 (in N2), 147.6 kJ mol?1 (in air) for III/I = 1/1. The white flaky residue of the TGA char was confirmed to be silicon dioxide, which formed a barrier at the surface of the polymer matrix and, in part, accounted for the unique heat resistance of this material. Copyright © 2005 Society of Chemical Industry  相似文献   

20.
Addition of allyl halides to the organolithium species derived from lithiation of Ntert‐butoxycarbonylindoline with sec‐butyllithium (sec‐BuLi) and tetramethylethylenediamine (TMEDA) occurs regioselectively by SN2 allylation. In contrast, the organolithium species can be transmetalated to the mixed zinc cuprate that undergoes regioselective SN2′ allylations. Transmetalation to the organozinc chloride allows a Negishi‐type cross‐coupling reaction with aryl bromides using palladium catalysis with triphenylphosphine (PPh3) as ligand. The chemistry was applied to a very short synthesis of 7‐prenylindole and of the alkaloid vasconine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号