首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Noscapine is a phthalideisoquinoline alkaloid isolated from the opium poppy Papaver somniferum. It has long been used as an antitussive agent, but has more recently been found to possess microtubule‐modulating properties and anticancer activity. Herein we report the synthesis and pharmacological evaluation of a series of 6′‐substituted noscapine derivatives. To underpin this structure–activity study, an efficient synthesis of N‐nornoscapine and its subsequent reduction to the cyclic ether derivative of N‐nornoscapine was developed. Reaction of the latter with a range of alkyl halides, acid chlorides, isocyanates, thioisocyanates, and chloroformate reagents resulted in the formation of the corresponding N‐alkyl, N‐acyl, N‐carbamoyl, N‐thiocarbamoyl, and N‐carbamate derivatives, respectively. The ability of these compounds to inhibit cell proliferation was assessed in cell‐cycle cytotoxicity assays using prostate cancer (PC3), breast cancer (MCF‐7), and colon cancer (Caco‐2) cell lines. Compounds that showed activity in the cell‐cycle assay were further evaluated in cell viability assays using PC3 and MCF‐7 cells.  相似文献   

3.
Triptolide is a diterpene triepoxide natural product isolated from Tripterygium wilfordii Hook F, a traditional Chinese medicinal herb. Triptolide has previously been shown to possess antitumor, anti‐inflammatory, immunosuppressive, and antifertility activities. Earlier reports suggested that the five‐membered unsaturated lactone ring (D ring) is essential for potent cytotoxicity, however, to the best of our knowledge, systematic structure–activity relationship studies have not yet been reported. Here, four types of D ring‐modified triptolide analogues were designed, synthesized and evaluated against human ovarian (SKOV‐3) and prostate (PC‐3) carcinoma cell lines. The results suggest that the D ring is essential to potency, however it can be modified, for example to C18 hydrogen bond acceptor and/or donor furan ring analogues, without complete loss of cytotoxic activity. Interestingly, evaluation of the key series of C19 analogues showed that this site is exquisitely sensitive to polarity. Together, these results will guide further optimization of this natural product lead compound for the development of potent and potentially clinically useful triptolide analogues.  相似文献   

4.
5.
6.
Natural products containing the α,β‐unsaturated δ‐lactone skeleton have been shown to possess a variety of biological activities. The natural product (?)‐tarchonanthuslactone ( 1 ) possessing this privileged scaffold is a popular synthetic target, but its biological activity remains underexplored. Herein, the total syntheses of dihydropyran‐2‐ones modeled on the structure of 1 were undertaken. These compounds were obtained in overall yields of 17–21 % based on the Keck asymmetric allylation reaction and were evaluated in vitro against eight different cultured human tumor cell lines. We further conducted initial investigation into the mechanism of action of selected analogues. Dihydropyran‐2‐one 8 [(S,E)‐(6‐oxo‐3,6‐dihydro‐2H‐pyran‐2‐yl)methyl 3‐(3,4‐dihydroxyphenyl)acrylate], a simplified analogue of (?)‐tarchonanthuslactone ( 1 ) bearing an additional electrophilic site and a catechol system, was the most cytotoxic and selective compound against six of the eight cancer cell lines analyzed, including the pancreatic cancer cell line. Preliminary studies on the mechanism of action of compound 8 on pancreatic cancer demonstrated that apoptotic cell death takes place mediated by an increase in the level of reactive oxygen species. It appears as though compound 8 , possessing two Michael acceptors and a catechol system, may be a promising scaffold for the selective killing of cancer cells, and thus, it deserves further investigation to determine its potential for cancer therapy.  相似文献   

7.
Sorbicillinoids are fungal polyketides characterized by highly complex and diverse molecular structures, with considerable stereochemical intricacy combined with a high degree of oxygenation. Many sorbicillinoids possess promising biological activities. An interesting member of this natural product family is sorbicatechol A, which is reported to have antiviral activity, particularly against influenza A virus (H1N1). Through a straightforward, one-pot chemoenzymatic approach with recently developed oxidoreductase SorbC, the characteristic bicyclo[2.2.2]octane core of sorbicatechol is structurally diversified by variation of its natural 2-methoxyphenol substituent. This facilitates the preparation of a focused library of structural analogues bearing substituted aromatic systems, alkanes, heterocycles, and ethers. Fast access to this structural diversity provides an opportunity to explore the antiviral potential of the sorbicatechol family.  相似文献   

8.
Rapamycin is a drug with several important clinical uses. Its complex structure means that total synthesis of this natural product and its analogues is demanding and lengthy. A more expeditious approach is to utilise biosynthesis to enable the generation of otherwise synthetically intractable analogues. In order to achieve this, rules governing biosynthetic precursor substrate preference must be established. Through determining these rules and synthesising and administering suitable substrate precursors, we demonstrate the first generation of fluorinated rapamycin analogues. Here we report the generation of six new fluororapamycins.  相似文献   

9.
10.
Prodigiosin : Amido‐functionalised prodigiosin‐derived compounds were synthesised via a robust and efficient synthetic route. These compounds were then evaluated against 60 human cell lines consisting of nine diverse tumour cell types and their anticancer activities were assessed.

  相似文献   


11.
The design, synthesis, and biological evaluation of a series of epothilone analogues with novel side chains equipped with an amino group are described. Their design facilitates potential conjugation to selective drug delivery systems such as antibodies. Their synthesis proceeded efficiently via Stille coupling of a readily available vinyl iodide and heterocyclic stannanes. Cytotoxicity studies and tubulin binding assays revealed two of these analogues to be more potent than epothilones A–D and the anticancer agent ixabepilone, currently in clinical use.  相似文献   

12.
Based on our previously described synthetic strategy for bengamide E, a natural product of marine origin with antitumor activity, a small library of analogues modified at the terminal olefinic position was generated with the objective of investigating the effect of structural modifications on antitumor properties. Biological evaluation of these analogues, consisting of IC50 determinations against various tumor cell lines, revealed important aspects with respect to the structural requirements of this olefinic position for activity. Interestingly, the analogue possessing a cyclopentyl group displayed greater potency than the parent bengamide E, representing a key finding upon which to base further investigations into the design of new analogues with promising biological activities.  相似文献   

13.
A novel series of indole‐2‐carbohydrazide derivatives were synthesized, characterized, and evaluated for their antiproliferative activities against two cancer cell lines, HCT116 and SW480, and a normal human fetal lung fibroblast cell line, MRC‐5. Among this series, compound 24 f displayed potent cytotoxic activities in vitro against HCT116 and SW480 cell lines with GI50 values of 8.1 and 7.9 μm , respectively, and was inactive against MRC‐5 cells. The newly synthesized compounds were also evaluated for anti‐angiogenesis capabilities by chick chorioallantoic membrane, human umbilical vein endothelial cell (HUVEC) migration, and endothelial microtubule formation assays. Moreover, the effects of 24 f on the vascular endothelial growth factor receptor‐2 and the signaling pathway in HUVECs indicated that this compound inhibits VEGFR‐2 and its downstream related proteins. These results indicate that compound 24 f , as well as the other derivatives, are promising inhibitors of angiogenesis.  相似文献   

14.
Novel angular and branched ellipticine‐correlated anticancer agents were developed. In particular, compound 24 , with two basic side chains on opposite sides of the molecule, exhibits cytotoxicity in the nanomolar range, acting as a DNA intercalator and topoisomerase II inhibitor. SAR studies with pyridocarbazole derivatives in comparison with corresponding smaller pyrroloquinolines are discussed.

  相似文献   


15.
Herein we describe the synthesis of a focused library of compounds based on the structure of goniothalamin ( 1 ) and the evaluation of the potential antitumor activity of the compounds. N‐Acylation of aza‐goniothalamin ( 2 ) restored the in vitro antiproliferative activity of this family of compounds. 1‐(E)‐But‐2‐enoyl‐6‐styryl‐5,6‐dihydropyridin‐2(1H)‐one ( 18 ) displayed enhanced antiproliferative activity. Both goniothalamin ( 1 ) and derivative 18 led to reactive oxygen species generation in PC‐3 cells, which was probably a signal for caspase‐dependent apoptosis. Treatment with derivative 18 promoted Annexin V/7‐aminoactinomycin D double staining, which indicated apoptosis, and also led to G2/M cell‐cycle arrest. In vivo studies in Ehrlich ascitic and solid tumor models confirmed the antitumor activity of goniothalamin ( 1 ), without signs of toxicity. However, derivative 18 exhibited an unexpectedly lower in vivo antitumor activity, despite the treatments being administered at the same site of inoculation. Contrary to its in vitro profile, aza‐goniothalamin ( 2 ) inhibited Ehrlich tumor growth, both on the ascitic and solid forms. Our findings highlight the importance of in vivo studies in the search for new candidates for cancer treatment.  相似文献   

16.
Three new oxazole‐bridged combretastatin A analogues with additional functional groups at the B‐ring [‐SMe, ‐OH, p‐quinone] were tested for antiproliferative activity and specificity on human HL‐60 leukemia, 518A2 melanoma, and colon carcinomas HCT‐116 (wt)/(p53?/?) and HT‐29 cells. While all oxazoles, except quinone 8 , were efficacious against HCT‐116 cells at submicromolar IC50 values (48 h incubation), only thioanisole 5 achieved this potency in combretastatin‐refractory HT‐29 cells by significant upregulation of p21cip1/waf1 associated with an S/G2 cell‐cycle arrest.  相似文献   

17.
The cytotoxic activities of 23 new isocombretastatin A derivatives with modifications on the B‐ring were investigated. Several compounds exhibited excellent antiproliferative activity at nanomolar concentrations against a panel of human cancer cell lines. Compounds isoFCA‐4 ( 2 e ), isoCA‐4 ( 2 k ) and isoNH2CA‐4 ( 2 s ) were the most cytotoxic, and strongly inhibited tubulin polymerization with IC50 values of 4, 2 and 1.5 μM , respectively. These derivatives were found to be 10‐fold more active than phenstatin and colchicine with respect to growth inhibition but displayed similar activities as tubulin polymerization inhibitors. In addition, cell cycle arrest in the G2/M phase and subsequent apoptosis was observed in three cancer cell lines when treated with these compounds. The disruptive effect of 2 e , 2 k and 2 s on the vessel‐like structures formed by human umbilical vein endothelial cells (HUVEC) suggest that these compounds may act as vascular disrupting agents. Both compounds 2 k and 2 s have the potential for further prodrug modification and development as vascular disrupting agents for treatment of solid tumors.  相似文献   

18.
19.
Noscapine, a phthalideisoquinoline alkaloid derived from Papaver somniferum, is a well‐known antitussive drug that has a relatively safe in vitro toxicity profile. Noscapine is also known to possess weak anticancer efficacy, and since its discovery, efforts have been made to design derivatives with improved potency. Herein, the synthesis of a series of noscapine analogues, which have been modified in the 6′, 9′, 1 and 7‐positions, is described. In a previous study, replacement of the naturally occurring N‐methyl group in the 6′‐position with an N‐ethylaminocarbonyl was shown to promote cell‐cycle arrest and cytotoxicity against three cancer cell lines. Here, this modification has been combined with other structural changes that have previously been shown to improve anticancer activity, namely halo substitution in the 9′‐position, regioselective O‐demethylation to reveal a free phenol in the 7‐position, and reduction of the lactone to the corresponding cyclic ether in the 1‐position. The incorporation of new aryl substituents in the 9′‐position was also investigated. The study identified interesting new compounds able to induce G2/M cell‐cycle arrest and that possess cytotoxic activity against the human prostate carcinoma cell line PC3, the human breast adenocarcinoma cell line MCF‐7, and the human pancreatic epithelioid carcinoma cell line PANC‐1. In particular, the ethyl urea cyclic ether noscapinoids and a compound containing a 6′‐ethylaminocarbonyl along with 9′‐chloro, 7‐hydroxy and lactone moieties exhibited the most promising biological activities, with EC50 values in the low micromolar range against all three cancer cell lines, and these derivatives warrant further investigation.  相似文献   

20.
A series of previously unknown sulforaphane analogues with organofluorine substituents bonded to the sulfinyl sulfur atom, an isoselenocyanate moiety in place of the isothiocyanate group, the central sulfur atom in various oxidation states, and different numbers of methylene groups in the central alkyl chain were synthesized and fully characterized. All new compounds were tested for their biological properties in vitro and demonstrated much higher anticancer activity against two breast cancer cell lines than that shown by native sulforaphane; at the same time, the compounds were less toxic for normal cells. The influence of the particular structural changes in the molecules on the cytotoxicity is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号