首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
釜式反应器中热二聚法分离C5混合物中的环戊二烯   总被引:4,自引:0,他引:4  
采用釜式间歇反应器对石油裂解C5混合原料中的环戊二烯(CPD)进行热二聚,生成双环戊二烯(DCPD)后进行分离,研究了CPD浓度,反应温度和反应时间以及C6含量等因素对反应过程的影响。  相似文献   

2.
釜式反应器中热二聚法分离C_5混合物中的环戊二烯   总被引:1,自引:0,他引:1  
采用釜式间歇反应器对石油裂解C5混合原料中的环戊二烯 (CPD)进行热二聚 ,生成双环戊二烯(DCPD)后进行分离。研究了CPD浓度、反应温度和反应时间以及C6含量等因素对反应过程的影响。  相似文献   

3.
夏君 《天津化工》2011,25(2):36-37
本文主要以双环戊二烯(DCPD)为原料,通过Diels-Alder加成反应合成高密度燃料-TCPD。利用连续固定床反应器,DCPD与环戊二烯(CPD)双烯加成法,来合成CPD三聚体(TCPD)。  相似文献   

4.
裂解C_5馏分中二烯烃热二聚过程的研究   总被引:2,自引:0,他引:2  
用封管实验方法考察了二聚反应温度、反应停留时间和不同环戊二烯(CPD)含量对C5馏分热二聚过程中各二烯烃组分反应行为的影响。结果表明,当反应温度在115~125℃、停留时间2~3h、CPD质量分数大于17%时,CPD的转化率不小于92%,异戊二烯(IP)、间戊二烯和1,3丁二烯的转化率分别在7%、1.5%和13%左右,双环戊二烯(DCPD)的收率接近80%,未知共二聚物的总生成量在2.6%左右。C5原料中CPD的含量高,其转化率和DCPD收率也高。C5原料存放一段时间,CPD含量降低后,IP的共二聚反应损失将略有减少。实验数据为工业上热二聚反应分离装置的设计提供了支撑。  相似文献   

5.
以环戊二烯(CPD)、金属钠和一氯甲烷为原料合成甲基环戊二烯,包括制备环戊二烯钠和环戊二烯钠甲基化两步反应。结果表明,反应温度及环戊二烯与钠的摩尔比对甲基环戊二烯的收率影响显著。双环戊二烯的最佳解聚温度为250℃,对于CPD与钠的反应,反应初期温度应控制在较低的温度,以减少CPD二聚反应;反应后期可将温度升高至28℃,以加快CPD与钠的反应速率。最佳的CPD与钠摩尔比为2.2,此时甲基环戊二烯的收率达86%。  相似文献   

6.
对乙二醇(EG)和对苯二甲酸(TPA)连续生产对苯二甲酸乙二酯(PET)的第一酯化反应器进行了数学模拟。数学模型中包括了反应动力学方程、气液平衡和气液传质方程,使模拟结果接近于工厂实践。此外对不同停留时间、不同的反应器操作温度及压力、不同的进料EG/TPA的mol比,进行了模拟计算,得出了反应器出口各种产物的组成随操作在数的变化,并对各操作参数的范围和对反应的影响进行了评述。  相似文献   

7.
复合膜生物反应器有机物去除动力学的研究   总被引:1,自引:0,他引:1  
韩建  周建群 《江西化工》2009,(1):160-162
本研究对向膜生物反应器中投加陶粒填料的复合式膜生物反应器(HMBR)处理生活污水的工艺条件进行了系统试验。在优化的工艺条件下进行了HMBR去除有机物的反应动力学研究,确定了该反应器生物处理反应动力学参数,并建立了反应器中有机底质降解动力学模型。  相似文献   

8.
采用共沉淀法制备纳米铜基催化剂CuO—H,o.。Pw,JSiO:,利用X射线粉末衍射p(RD)、扫描电子显微镜(SEM)对催化剂进行了表征。在微型固定床反应器上考察了反应压力、反应温度、氢醇比、液空速对催化剂活性的影响。结果表明:在反应温度2009C,氢气压力3.5MPa,n(H2):n(甘油)=50:1,液空速0.30h叫的较佳条件下,甘油转化率为30.15%,1,3一PDO选择性达80.12%。  相似文献   

9.
化学渗透脱挥发分模型(Chemical Percolation Devolatilization, CPD)用于快速升温条件下煤炭脱挥发分的模拟,可以预测不同煤种热解过程中焦油、半焦和轻质气体的实时产率。模型基于晶格模型构建煤炭化学结构,具有煤种适用性广、输入参数少的特点,得到广泛关注。首先介绍了CPD模型的发展历程、煤炭模型构建方法和热解反应路径假设与动力学参数计算等,进而综述了CPD模型在煤炭、油页岩和生物质等碳基固体原料热化学转化领域的应用进展。为提高CPD模型在煤炭热转化领域的准确性和适用性,我国学者根据中国煤种结构分析建立了更准确的晶格参数计算方法。通过改进CPD模型中热解反应路径并修正动力学参数使模型更接近真实热解过程,通过对煤颗粒内部温度梯度分布修正及算法改进使得模拟更接近实际热解工况。在油页岩热转化方面,相关学者从油页岩中干酪根化学结构出发,结合油页岩热解特性建立了用于描述其热转化的CPD模型。通过分析生物质的结构特点和反应特性建立了生物质CPD模型,并从化学结构、热解反应路径以及动力学参数等方面进行改进来扩展模型的适用性。CPD模型虽然已得到了广泛应用,但根据煤炭元素...  相似文献   

10.
由南化集团研究院开发完成的C307型中低压合成甲醇催化剂,适用于各种原料、各种工艺、各种类型的反应器,催化CO、CO2和H2合成甲醇的反应(尤其是中低压反应)。  相似文献   

11.
介绍了裂解汽油全馏分加氢过程中发生的环戊二烯热二聚及双环戊二烯热分解反应。该转化反应导致了二段加氢反应器双烯值高于一段出料的双烯值,并缩短了二段加氢反应催化剂的运行周期,提出了降低影响的措施。  相似文献   

12.
阻聚剂在C_5馏分热二聚过程中的应用   总被引:1,自引:0,他引:1  
为减少C5馏分环戊二烯(CPD)热二聚过程中异戊二烯(IP)的聚合损失,采用封管实验方法考察了添加阻聚剂二乙基羟胺(DEHA)、对叔丁基邻苯二酚(TBC)、邻硝基苯酚(ONP)对热二聚过程中各二烯烃组分聚合程度的影响。结果表明,阻聚剂的加入不影响CPD的二聚,但减少了IP、间戊二烯(PD)的聚合损失。就阻聚效果而言,DEHA优于TBC和ONP。通过正交实验,考察了热二聚温度、时间以及DEHA质量分数等因素对双环戊二烯(DCPD)收率和IP聚合损失的影响。较佳工艺条件是热二聚温度120℃,反应时间3 h,DEHA质量分数500×10-6。该条件下DCPD的收率达到80%左右,IP的聚合损失可控制在8%以内。  相似文献   

13.
Experimental and Theoretical Investigations on Hydrocarbons of the Formula C5H6: Pyrolysis of 1,3-Cyclopentadiene The details of high temperature chemistry of the conversion of 1,3-cyclopentadiene (CPD) are unknown. Therefore the pyrolysis of CPD was studied under various reaction conditions in labscale dimension. The attempt to interpret the composition of the reaction products only on the basis of convenient axiomes does not seem satisfactory. For that reason heats of formation and relative stabilities for 25 closed and open shell hydrocarbons of the formula C5H6 were calculated using the MINDO/3 procedure. These enthalpy values were used to estimate heats of reactions for selected start steps of the pyrolysis of CPD. The molecular-assisted hydrogen transfer under formation of cyclopentadienyl and cyclopentenyl radicals ought to be one of the most important reaction steps.  相似文献   

14.
A systematic and general model was proposed for the simulation of cross-flow reactors with product removal and reactant feed policies. Six types of cross-flow reactors were analyzed for reversible series-parallel reaction systems and their optimal feed distributions were determined by maximizing the desired product yield at the outlet of the reactor. The performances of reactors with different types of feed policies were compared at their optimal operating conditions. For irreversible reaction systems with lower order in distributed reactant for the desired reaction than those for undesired reactions, a higher yield and selectivity of the desired product could be achieved with the reactors with staged feed than with conventional co-feed reactors and a sufficiently high residence time was required by staged feed reactors to significantly improve the desired product yields and selectivities over those obtained by a co-feed reactor. However, for reversible reaction systems, the desired product yield always reached a maximum value, and then dropped down as the residence time increased. In addition to the kinetic order and residence time requirements, the rate constants of the reactions involved have to fall within certain ranges for the distributed feed reactor to obtain a higher maximum yield than one-stage co-feed reactors. Optimally distributed feed reactors always give higher maximum product yields than evenly distributed reactors with the same number of feed points. However, the improvement of yields is not as great as that between co-feed reactors and evenly distributed reactors. On the other hand, for reaction systems with higher order with respect to the distributed reactant in the desired reaction than the undesired reactions, co-feed reactors always give higher yield than staged feed reactors.  相似文献   

15.
李爱元  张永春  彭振博  孙向东 《广东化工》2012,39(16):99+101-99,101
介绍了从C5和C9馏分中分离CPD、DCPD以及二者聚合时,动力学和热力学理论方面的研究进展。  相似文献   

16.
An evaluation of the catalytic reactivity of [CPD (CO)2RuH]2 (1) and (CPD)(CO)3Ru (2) (where CPD = tetraphenylcyclopentadienone) with amines suggests that these complexes catalyze C-N bond cleavage by activating C-H bonds alpha to the nitrogen atom of tertiary, secondary and primary amines at ca. 140° C. When two different amines are used, transalkylation takes place. With secondary and primary amines, ammonia and tertiary amines are formed. A series of amine complexes (CPD)(CO)2Ru.NR3 (R = alkyl/H) was isolated from stoichiometric reactions of 1 or 2 with primary and secondary amines. It was found that tertiary amines do not generate complexes of the above type but rather unexpectedly give secondary amine complexes by cleavage of an alkyl group. The only isolatable tertiary amine complex is the moderately stable (CPD)(CO)2RuNMe3. All amine complexes were characterized by spectral and elemental analyses. Catalytic aspects of C-N bond cleavage were studied. Complexes (1) and (2) were found to react with primary, secondary and tertiary amines to generate imminium or eneamine species which subsequently undergo hydrolysis with water. This is in contrast to the Ru carbene mechanism previously proposed for cluster catalyzed C-N bond activation and cleavage. The two reactions are compared with respect to D for H exchange (with D2O), water requirement and production of trace products during catalysis. A primary alcohol was found to substitute alkyl groups of a tertiary amine under the catalytic action of 1. A catalytic reaction cycle is proposed.  相似文献   

17.
High flux tubular membrane reactors were designed for dimethyl ether (DME) steam reforming. Considering the facile scale-up and high flux of hydrogen, tubular stainless steel supports were employed for the membrane reactors. At 500°C, DME conversion reached ~100%, while hydrogen recovery reached 20%. However, contamination by CO was rather high (>1%), making this process unsuitable for proton exchange membrane fuel cell applications, which require a CO concentration of <100 ppm. This result showed that an additional polishing step was needed to reduce the CO concentration. Membrane reactors were further modified to perform an water–gas shift reaction on the permeate of the membrane reactors by employing a fixed bed reactor, which yielded high-purity hydrogen (~99%) along with a low CO content (<20 ppm).  相似文献   

18.
环戊二烯选择加氢制环戊烯   总被引:1,自引:0,他引:1  
周秀凤 《化学工程师》2009,23(12):72-74
用Pd催化剂在固定床反应器中进行了环戊二烯选择加氢制备环戊烯研究;确定了第一段加氢催化剂采用Pd含量为0.5(wt)%载体为γ-Al2O3催化剂,第二段加氢催化剂为钯含量为0.3(wt)%载体为γ-Al2O3催化剂。第一段氢烃摩尔比为2—3,反应压力为1.2MPa,空速2~4h~,温度55—60℃,第二段氢烃摩尔比为3.5~4,温度80~85℃时,环戊二烯的转化率达99.5%,环戊烯的选择性在90%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号