首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Biomass is renewable source of energy while the reserves of petroleum arc being depleted. The latex of a potential petrocrop, Colotropis procera, a lalicifcr, arid-plant which is rich in hydrocarbon type triterpene compounds etc. was found lo be a better feed slock for thermal hydrocracking as compared to whole plant biomass inlcrms of liquid product yield. Studies of chemical reaction dynamics of the thermal cracking of latex at 200-400°C showed that the process should be termed as hydrogen-tranfer (H-T) hydrocracking of latex under ambient pressure conditions. The hydrogen rich cracked trilcrpenoids act as the H-donors in this process, where nascent hydrogen atoms and free radicals chemically plug the cracked moities to stabilise these. Latex was also coagulated and the H-T hydrocracking of the feedstock coagulum gave a higher yield of cracked oil in comparision lo that from the dried latex. A model triterpene compound, ursolic acid has been subjected to H-T hydrocracking to understand the process of hydrocracking of latex under similar conditions and it was found that triterpencs on H-T hydrocracking produced only liquid and gaseous products and no solid char. The temperature for hydrocracking of latex has been optimized to 350°C and molecular sieve was round to catalyse the H-T Hytrocraking process to yield more liquid product The distillation range of cracked latex on(CLO)Obtained from H.T Hytrocracking of C procera Latex indicated that it can be used as fuel. Moreover CLO resembled diesel fuels and was predominantly paraffinic in nature as characterised by NMR and FTIR spectral analysis. A process has been recommended for gelling value added fuels and chemicals from C. procera latex.  相似文献   

2.
ABSTRACT

Photothermal degradation of the latex obtained from Calotropis procera showed enhanced extraction in heptane up to 50%. Treatment of the latex with different concentrations of NaOH resulted in the reduction in heptane extraction of the latex. Treatment of latex with aqueous HC1 coagulated it and thus resulted in an increase in extraction yield. The 1HNMR, l3CNMR and FTTR spectral analyses of treated latex showed an increase in the olefinic and carbonyl groups in the latex. Thus, this showed that photothermal treatments rendered the latex more amenable to hydrocracking for obtaining value added chemicals and fuels from the latex.  相似文献   

3.
In this work, we present an experimental evaluation concerning the catalytic hydrocracking of gas oil (GO) feedstock. The study was carried out using five types of supported NiMo-based catalysts (100A, 100AP, 100AB, 100H-DY, and 30H-DY). Screening tests of the performance of these sulfided catalysts were carried out in a high-pressure batch autoclave at temperatures of 350°C-425°C, reaction time of 1-3 hr, catalyst/feed ratios of 5-10%, and initial hydrogen pressure of 6.0 MPa. This study clearly shows that the incorporation of H-DY zolite into aluminum borate (AB) matrix led to a greatly improved hydrocracking catalyst for production of lighter products, in addition to depressing the pour point of the diesel fuel product. In all experiments, the yield of gasoline and gaseous products increased dramatically by increasing the severity of the process variables. A high-pressure test unit was used to study the effect of different process variables as pressure (3.0-6.0 MPa), liquid hourly space velocity (1.5-3 hr-1), hydrogen/ GO volumetric ratio (400 vol./vol.), and temperatures of 375°C, on the GO conversion to various products using 30H-DY catalyst, and to correlate the impact of process conditions on the yield and quality of diesel fuel and gasoline products to optimize the process  相似文献   

4.
A pilot plant study was conducted on mild hydrocracking of heavy vacuum gas oils derived from two different crude sources over a commercially available catalyst to determine the possibility of utilizing mild hydrocracker bottoms as fluidized catalytic cracking feedstock along with improved middle distillate yields. The mild hydrocracking experiments were conducted at 390°C, 60 kg/cm2, 1.0/h liquid hourly space velocity and H2/oil ratio of 390 l/l in a pilot plant trickle bed reactor using two catalyst beds for pretreatment and mild hydrocracking reactions. The experimental results showed that mild hydrocracking would result in valuable middle distillates with low sulphur and nitrogen content. With research octane number of 78, the naphtha obtained from mild hydrocracking was found to be a good blending stock for gasoline pool. The middle distillate fraction (140-370°C) obtained from mild hydrocracking product was found to have cetane number in the range of 48-54. The bottom product from mild hydrocracking of heavy vacuum gas oils was found to be a good feedstock for fluidized catalytic cracking unit because of its low sulphur, nitrogen and aromatic contents. The data obtained from pilot plant studies showed that the processing of mild cracker bottom in FCC unit would result in better quality fuels.  相似文献   

5.
采用等体积浸渍法,制备了以USY-Al2O3为载体、Ni-W为金属组分的加氢裂化催化剂,并用X-射线衍射、吡啶吸附红外漫反射光谱、低温N2吸附-脱附等对催化剂进行表征。利用单因素变量法,分别考察了温度、空速、氢油比以及压力等工艺条件对费-托合成蜡加氢裂化反应性能的影响。结果表明,工艺条件对催化剂反应性能的影响强度由大到小的顺序为:温度>空速>氢油比>压力,在温度340 ℃、质量空速1.5 h-1、氢油体积比1 000、压力4 MPa的条件下,转化效果最佳,重质蜡转化率高达98.11%,轻质燃料油选择性为92.77%,裂解气选择性仅为7.23%。  相似文献   

6.
采用中国石油化工股份有限公司大连(抚顺)石油化工研究院研制的三种酸性依次提高,比表面积依次增大,加氢功能金属含量依次减少的催化剂,以芳烃含量较高的催化裂化柴油为原料进行了中试试验,在工艺条件相同的情况下,研究了上述三种不同类型催化剂对催化裂化柴油加氢裂化的产品分布、液体收率、氢耗和产品性质的影响规律。结果表明:在适宜的工艺条件下,采用酸性增强、比表面积增大和加氢金属含量减少的催化剂,加氢裂化产品中重石脑油收率和化学氢耗增加,柴油收率和液体收率减小,重石脑油抗爆指数可以达到84以上,柴油馏分十六烷指数可以达到35以上。以此数据建立六级总动力学模型,实现了加氢裂化装置液收和氢耗预估,以及石脑油馏分烷烃、环烷烃、芳烃和抗爆指数,柴油馏分烷烃、环烷烃、芳烃和十六烷指数率等产品性质的预测。通过对模型参数的调整,以及预测值与试验值的对比,较好地预测了不同催化剂对催化裂化柴油加氢裂化产品性质的影响,预测误差均在4%以内。  相似文献   

7.
在703 K 下,考察了1种正戊烷不溶的沥青质的热裂解、临氢热裂解和 NiMo/γ-Al2O3存在时的临氢催化裂解反应。结果表明,在相同的反应物转化率水平下,3种裂解反应按液体产物选择性从大到小的排列顺序为临氢催化裂解、临氢热裂解、热裂解反应,而按焦炭的选择性的排列顺序则相反。在热裂解反应中,沥青质中大量的硫被转化生成高硫焦炭;在临氢热裂解反应中,氢气分子对高硫焦炭的生成只起到有限的抑制作用;在临氢催化裂解反应中,催化剂充分激活氢气分子,使其有效地对沥青质及中间产物发生“加氢”(氢化)作用,显著地抑制了焦炭的生成,提高了液体产物的稳定性、选择性和品质(低相对分子质量和低硫含量)。  相似文献   

8.
ABSTRACT

The latex of Calotropia arocera (Ait.) R.Br., (a potential petrocrop) may be exploited to obtain fuels and chemicals. This latex has been subjected to microbial action with Sphaerotilus aeruginosa, Sphaerotilus natans, Streptococcus sp.. Escherichia coli. Penicllllum expanaum and Mucor Sp. with an aim to find out a biochemical route way to obtain fuels and chemicals. The treated latex was extracted with hexane, chloroform and methanol separately. The extracts obtained were analysed using 13CNMR and 1HNMR spectral techniques to understand the chemical dynamics of biotransformation of latex components. Microbial action was found to degrade, biotransform, oxidise, dehydrogenate and dearomatize the chemical components of the latex. S. aeruginosa and streptococcus sp were found to be the potential candidates for the microbial degradation of latex. Latex mainly contains triterterpenoid, steroid etc. compounds. These acyclic and naphthenic type of compounds are stabler and relatively less reactive compounds. Hydrotreatment of such compounds by thermal degradation would require drastic conditions. The complex degradation reactions at high temperature (under pressure) would be slower. Microbial treatment renders the latex (;and compounds present therein) as reactive substrates or feedstocks close for hydrotreatment for obtaining value added and premium products. These products may include value added chemicals, fuels and pharmaceuticals etc. in the long run. Microbial treatments may reduce the heat panalty of the hydrogen treatment etc. process. This may also make the rates of the hydrotreatment etc. reactions faster to afford the continuous processes in the long run  相似文献   

9.
Heavy oil upgrading is a very important process in the petroleum industry, but is very difficult because it has a high impurity content. A variety of heavy oil upgrading technologies have been developed in the world, including the catalytic hydrocracking process, which can process various heavy oils with a high yield of liquid products. Although this technology is one of the most widely used methods for upgrading heavy oil, the use of expensive molecular hydrogen is costly. The heavy oil upgrading technology with alternative hydrogen is very important. The catalytic hydroconversion of Gudao residue with different catalysts using water-syngas as an alternative hydrogen was investigated in this study. Hydrogen is provided in-situ for hydrocracking through the water-gas shift reaction (WGSR). The experimental results show that catalysts play a very important role in catalytic hydroconversion of Gudao residue using water-syngas as an alternative hydrogen. Addition of catalysts to residue was found to improve the distribution or properties of cracking products and inhibit the asphaltene or TI formation.  相似文献   

10.
Hydrodealkylation (HDA) of the benzene-toluene-xylene (BTX) fraction of pyrolysis gasoline is an industrial route to produce benzene. Complicated kinetics of aromatic and nonaromatic hydrocarbon reactions has been experimentally investigated at the conditions of this process, employing a polyfunctional Al-Cr-KF catalyst with a high benzene selectivity, model feeds and BTX. The study reports effects of nonaromatic hydrocarbons on high temperature catalytic conversion of toluene. Above 525°C the process is found to be thermo-catalytic meaning that reactions take place on the catalyst surface and between catalyst pellets. The “pure” catalytic component of conversion is taken to be the difference between a thermo-catalytic and a thermal (i.e., without catalyst) run at the same conditions. Nonaromatic hydrocarbons substantially boost interpellet toluene HDA which is explained by a mechanism involving very fast decomposition of the nonaromatics into active radicals. The accompanying slight fall in catalytic toluene HDA, on the other hand, is considered to be due to nonaromatics and/or their hydrocracking products impeding toluene diffusion to the catalyst surface whose active centers they partially occupy. There is evidence that the C6-C8 nonaromatics of BTX influence the toluene conversion in the same manner as n-octane and cyclohexane. Benzene seems to render a small fall in surface conversion of toluene probably by inhibiting its diffusion. It apparently has no significant influence on nonaromatic hydrocracking or thermal toluene HDA. The hydrocracking products of the model feeds and BTX are 97-99 mol% C1-C4 alkanes and 1-3 mol% C2-C4 alkenes irrespective of the run type (i.e., thermal or catalytic). Moreover, given more time the hydrocracking reactions in the voids surpass those on the catalyst surface. Changing hydrogen:BTX molar ratio from 1.5 to 10 raises thermal (respectively “pure” catalytic) contribution significantly (respectively slightly) to conversions of toluene, C8 aromatics, n-octane, cyclohexane, and other C6-C8 nonaromatics.  相似文献   

11.
《Petroleum Science and Technology》2013,31(11-12):1453-1462
Abstract:

Heavy oil upgrading is a very important process in the petroleum industry, but is very difficult because it has a high impurity content. A variety of heavy oil upgrading technologies have been developed in the world, including the catalytic hydrocracking process, which can process various heavy oils with a high yield of liquid products. Although this technology is one of the most widely used methods for upgrading heavy oil, the use of expensive molecular hydrogen is costly. The heavy oil upgrading technology with alternative hydrogen is very important. The catalytic hydroconversion of Gudao residue with different catalysts using water-syngas as an alternative hydrogen was investigated in this study. Hydrogen is provided in-situ for hydrocracking through the water-gas shift reaction (WGSR). The experimental results show that catalysts play a very important role in catalytic hydroconversion of Gudao residue using water-syngas as an alternative hydrogen. Addition of catalysts to residue was found to improve the distribution or properties of cracking products and inhibit the asphaltene or TI formation.  相似文献   

12.
对孤岛减压渣油在CO -SCW体系中加氢改质研究表明 ,利用CO与SCW发生的水 -气变换反应获得加氢所需氢源是可行的。在适宜的条件下 ,渣油在CO -SCW体系中改质可达到在H2 -SCW体系中改质同样的效果  相似文献   

13.
Abstract

In this work, we present an experimental evaluation concerning the catalytic hydrocracking of gas oil (GO) feedstock. The study was carried out using five types of supported NiMo-based catalysts (100A, 100AP, 100AB, 100H-DY, and 30H-DY). Screening tests of the performance of these sulfided catalysts were carried out in a high-pressure batch autoclave at temperatures of 350°C–425°C, reaction time of 1–3 hr, catalyst/feed ratios of 5–10%, and initial hydrogen pressure of 6.0 MPa. This study clearly shows that the incorporation of H-DY zolite into aluminum borate (AB) matrix led to a greatly improved hydrocracking catalyst for production of lighter products, in addition to depressing the pour point of the diesel fuel product. In all experiments, the yield of gasoline and gaseous products increased dramatically by increasing the severity of the process variables. A high-pressure test unit was used to study the effect of different process variables as pressure (3.0–6.0 MPa), liquid hourly space velocity (1.5–3 hr?1), hydrogen/ GO volumetric ratio (400 vol./vol.), and temperatures of 375°C, on the GO conversion to various products using 30H-DY catalyst, and to correlate the impact of process conditions on the yield and quality of diesel fuel and gasoline products to optimize the process  相似文献   

14.
在中型试验装置上,以煤焦油全馏分为原料,采用加氢精制-加氢裂化两段法工艺技术路线,对煤焦油原料进行加氢提质,以生产清洁燃料油。考察了反应温度、压力、空速和氢油比对加氢精制生成油性质的影响规律;并对加氢精制尾油开展了加氢裂化试验,确定了适宜的加氢裂化工艺条件。结果表明:在适宜的工艺条件下,石脑油和柴油馏分收率超过95%,其中柴油馏分硫质量分数低于10 ?g/g、十六烷值接近45。催化剂2 600 h运转稳定性考察期间,产品性质保持稳定。本技术实现了煤焦油轻质化、清洁化利用的目的,具备工业长周期运转的条件。  相似文献   

15.
在反应釜中考察了单质钼的硫化对氘代异丙苯加氢裂化的影响、考察了Ni(NO3)2的硫化对叔丁基苯和正丁基苯加氢裂化的影响、以Ni(NO3)2为主催化剂的分散型催化剂的硫化对渣油悬浮床加氢裂化的影响。结果表明,Mo作用下氘代异丙苯侧链上的氢与环境中的氢发生置换的速度较快,Mo+CS2作用下苯环上的氢与环境中的氢发生置换的速度较快。Ni(NO3)2催化剂的硫化对叔丁基苯和正丁基苯分子中氢与环境中氢的置换,产生类似的影响。催化剂的硫化对不易发生自由基热反应的氘代异丙苯和叔丁基苯的氢解裂化反应和缩合反应都有促进作用;对易于发生自由基热反应的正丁基苯的缩合反应同样具有促进作用,但对正丁基的自由基裂化反应和氢解裂化反应具有抑制作用。以Ni(NO3)2为主催化剂的分散型催化剂的硫化,抑制了渣油的裂化,促进了甲苯不溶物的生成,因此,悬浮床加氢裂化过程中催化剂的硫化并不是必需的过程。  相似文献   

16.
采用热解法对油田污泥进行处理,通过热解分析及热解放大试验,考察不同温度下热解油收率的变化,并对热解油进行加氢精制研究。结果表明:随着热解温度升高,产油率降低,热解终温以600℃较为适宜,产油率为38.61%,产气率为6.52%;热解油的残炭、金属含量、硫含量、氮含量以及沥青质含量均较低;在反应温度为420℃、氢分压为12.0 MPa、氢油体积比为800、体积空速为1.0h~(-1)的条件下,热解油经加氢处理后,脱硫率为94.5%,脱氮率为89.4%,氢油馏分收率较高,可作为轻质燃料调合组分,而蜡油馏分及重油馏分可以作为优质的加氢裂化原料,进而获得更多的轻质燃料。  相似文献   

17.
Synthetic fuels are expected to become a major source of energy supply in the future and major sources of synthetic fuels will be coal, shale oil and tar sand.

This paper presents an investigation of hydrotreating using a batch process for bitumen from Nigerian oil sand. The chatacteriistics in conversion of asphaltencs were studied. Various ananlyses were performed to obtain the properties of the bittemen before and after conversion to synthetic crude, e.g., changes of heteroatoms such as sulphur decreases of asphaltics, viscosity add specific gravity, and increases of distillate yield.

The process liquid fuel streams that are highly aromatic. The data suggest that the use of hydrogen causes stabilization of reactive intermediates rather than saturation of thermal products.  相似文献   

18.
镇海0.80Mt/a加氢裂化装置是我国对加氢裂化工艺技术、工程设计和重大装备进行研究开发后建成的首套国产化的大型加氢裂化装置,其C+5产品收率高达94.07%,氢耗量仅为311.3m3/t,能耗为2915.7MJ/t,达到和超过了同类国外引进装置的水平,介绍了该装置主要国产化的内容和成果以及两次技术改造情况.改造后装置加工能力分别扩大到0.90Mt/a和1.0Mt/a,能适应高含硫油的加工要求,并为催化裂化提供部分优质原料.  相似文献   

19.
Gasification is a clean technology to convert fuels to high-quality syngas in presence of a gasifying agent. In this study, an Aspen Plus model of heavy oil gasification was developed to produce the hydrogen rich syngas. Effect of some parameters such as gasification temperature and steam/fuel ratio on the hydrogen yield and was investigated. Results showed that the temperature plays a major role in the process; higher temperatures produce the higher hydrogen content. It was also found that the operation under high steam/fuel ratio can cause a significant increase in the hydrogen yield. The modeling results were compared with the experimental data available in the literature and found to be in good agreement.  相似文献   

20.
介绍了国内首套引进Shell Global Solutions技术的400万t/a加氢裂化装置的工艺流程、技术特点和运行工况。该装置采用炉后混油流程、分馏系统汽提塔和稳定塔采用双再沸器设计、反应注水部分循环利用等新技术。100%设计负荷下的标定结果表明,在精制和裂化催化剂平均反应温度比设计值低约20℃的情况下,产品液体总收率为98.07%,中馏分油收率为56.30%,气体收率为4.55%,化学氢耗为2.70%,装置能耗为26.050 3 kg/t(以标准油计)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号