首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present an optimal parallel algorithm for computing a cycle separator of ann-vertex embedded planar undirected graph inO(logn) time onn/logn processors. As a consequence, we also obtain an improved parallel algorithm for constructing a depth-first search tree rooted at any given vertex in a connected planar undirected graph in O(log2 n) time on n/logn processors. The best previous algorithms for computing depth-first search trees and cycle separators achieved the same time complexities, but withn processors. Our algorithms run on a parallel random access machine that permits concurrent reads and concurrent writes in its shared memory and allows an arbitrary processor to succeed in case of a write conflict.A preliminary version of this paper appeared as Improved Parallel Depth-First Search in Undirected Planar Graphs in theProceedings of the Third Workshop on Algorithms and Data Structures, 1993, pp. 407–420.Supported in part by NSF Grant CCR-9101385.  相似文献   

2.
We present a simple parallel algorithm for computing the greatest common divisor (gcd) of twon-bit integers in the Common version of the CRCW model of computation. The run-time of the algorithm in terms of bit operations isO(n/logn), usingn 1+ processors, where is any positive constant. This improves on the algorithm of Kannan, Miller, and Rudolph, the only sublinear algorithm known previously, both in run time and in number of processors; they requireO(n log logn/logn),n 2 log2 n, respectively, in the same CRCW model.We give an alternative implementation of our algorithm in the CREW model. Its run-time isO(n log logn/logn), usingn 1+ processors. Both implementations can be modified to yield the extended gcd, within the same complexity bounds.Supported in part by an IBM Graduate Fellowship and a Bantrell Postdoctoral Fellowship.Supported in part by a Weizmann Postdoctoral Fellowship.4 All logarithms are to base 2.  相似文献   

3.
An optimal parallel algorithm for volume ray casting   总被引:3,自引:0,他引:3  
Volume rendering by ray casting is computationally expensive. For interactive volume visualization, rendering must be done in real time (30 frames/s). Since the typical size of a 3D dataset is 2563, parallel processing is imperative. In this paper, we present anO(logn) EREW algorithm for volume rendering. We useO(n 3) processors that can be optimized toO(log3 n) time withO(n 3/log3 n) processors. We have implemented our algorithm on a MasPar MP-1. The implementation results show that a frame of size 2563 is generated in 11 s by 4096 processors. This time can be further reduced by the use of large number of processors.  相似文献   

4.
5.
We present a parallel algorithm for finding a maximum weight matching in general bipartite graphs with an adjustable time complexity of using O(nmax(2ω,4+ω)) processing elements for ω?1. Parameter ω is not bounded. This is the fastest known strongly polynomial parallel algorithm to solve this problem. This is also the first adjustable parallel algorithm for the maximum weight bipartite matching problem in which the execution time can be reduced by an unbounded factor. We also present a general approach for finding efficient parallel algorithms for the maximum matching problem.  相似文献   

6.
Dipen Moitra 《Algorithmica》1991,6(1):624-657
Given a black-and-white image, represented by an array of n × n binary-valued pixels, we wish to cover the black pixels with aminimal set of (possibly overlapping) maximal squares. It was recently shown that obtaining aminimum square cover for a polygonal binary image with holes is NP-hard. We derive an optimal parallel algorithm for theminimal square cover problem, which for any desired computation timeT in [logn,n] runs on an EREW-PRAM with (n/T) processors. The cornerstone of our algorithm is a novel data structure, the cover graph, which compactly represents the covering relationships between the maximal squares of the image. The size of the cover graph is linear in the number of pixels. This algorithm has applications to problems in VLSI mask generation, incremental update of raster displays, and image compression.The research reported here forms part of the author's doctoral dissertion, submitted to Cornell University in May 1989. This work was partially supported by NSF Grant DC1-86-02256, IBM Agreement 12060043, and ONR Contract N00014-83-K-0640. A preliminary version of this paper was presented at the 26th Annual Allerton Conference on Communications, Control, and Computing, Monticello, IL, September 28–30, 1988.  相似文献   

7.
We present an efficient parallel algorithm for building the separating tree for a separable permutation. Our algorithm runs in O(log2n)O(log2n) time using O(nlog1.5n)O(nlog1.5n) operations on the CREW PRAM and O(log2n)O(log2n) time using O(nlognloglogn)O(nlognloglogn) operations on the COMMON CRCW PRAM.  相似文献   

8.
Optical interconnections attract many engineers and scientists’ attention due to their potential for gigahertz transfer rates and concurrent access to the bus in a pipelined fashion. These unique characteristics of optical interconnections give us the opportunity to reconsider traditional algorithms designed for ideal parallel computing models, such as PRAMs. Since the PRAM model is far from practice, not all algorithms designed on this model can be implemented on a realistic parallel computing system. From this point of view, we study Cole’s pipelined merge sort [Cole R. Parallel merge sort. SIAM J Comput 1988;14:770–85] on the CREW PRAM and extend it in an innovative way to an optical interconnection model, the LARPBS (Linear Array with Reconfigurable Pipelined Bus System) model [Pan Y, Li K. Linear array with a reconfigurable pipelined bus system—concepts and applications. J Inform Sci 1998;106;237–58]. Although Cole’s algorithm is optimal, communication details have not been provided due to the fact that it is designed for a PRAM. We close this gap in our sorting algorithm on the LARPBS model and obtain an O(log N)-time optimal sorting algorithm using O(N) processors. This is a substantial improvement over the previous best sorting algorithm on the LARPBS model that runs in O(log N log log N) worst-case time using N processors [Datta A, Soundaralakshmi S, Owens R. Fast sorting algorithms on a linear array with a reconfigurable pipelined bus system. IEEE Trans Parallel Distribut Syst 2002;13(3):212–22]. Our solution allows efficiently assign and reuse processors. We also discover two new properties of Cole’s sorting algorithm that are presented as lemmas in this paper.  相似文献   

9.
As is well known, the strategy of divide-and-conquer is widely used in problem solving. The method of partitioning is also a fundamental strategy for the design of a parallel algorithm. The problem of enumerating the spanning trees of a graph arises in several contexts such as computer-aided design and computer networks. A parallel algorithm for solving the problem is presented in this paper. It is based on the principle of the inclusion and exclusion of sets, and not directly based on the partitioning of the graph itself. The results of the preliminary experiments on a MIMD system appear promising.  相似文献   

10.
Computing shortest paths in a directed graph has received considerable attention in the sequential RAM model of computation. However, developing a polylog-time parallel algorithm that is close to the sequential optimal in terms of the total work done remains an elusive goal. We present a first step in this direction by giving efficient parallel algorithms for shortest paths in planar layered digraphs.We show that these graphs admit special kinds of separators calledone- way separators which allow the paths in the graph to cross it only once. We use these separators to give divide- and -conquer solutions to the problem of finding the shortest paths between any two vertices. We first give a simple algorithm that works in the CREW model and computes the shortest path between any two vertices in ann-node planar layered digraph in timeO(log2 n) usingn/logn processors. We then use results of Aggarwal and Park [1] and Atallah [4] to improve the time bound toO(log2 n) in the CREW model andO(logn log logn) in the CREW model. The processor bounds still remain asn/logn for the CREW model andn/log logn for the CRCW model.Support for the first and third authors was provided in part by a National Science Foundation Presidential Young Investigator Award CCR-9047466 with matching funds from IBM, by NSF Research Grant CCR-9007851, by Army Research Office Grant DAAL03-91-G-0035, and by the Office of Naval Research and the Advanced Research Projects Agency under Contract N00014-91-J-4052, ARPA, Order 8225. Support for the second author was provided in part by NSF Research Grant CCR-9007851, by Army Research Office Grant DAAL03-91-G-0035, and by the Office of Naval Research and the Advanced Research Projects Agency under Contract N00014-91-J-4052 and ARPA Order 8225.  相似文献   

11.
Xin He 《Algorithmica》1995,13(6):553-572
We present an efficient parallel algorithm for constructing rectangular duals of plane triangular graphs. This problem finds applications in VLSI design and floor-planning problems. No NC algorithm for solving this problem was previously known. The algorithm takesO(log2 n) time withO(n) processors on a CRCW PRAM, wheren is the number of vertices of the graph.This research was supported by NSF Grants CCR-9011214 and CCR-9205982.  相似文献   

12.
Let (G) denote the independence number of a graphG, that is the maximum number of pairwise independent vertices inG. We present a parallel algorithm that computes in a planar graphG = (V, E), an independent set such that ¦I¦ (G)/2. The algorithm runs in timeOlog2 n) and requires a linear number of processors. This is achieved by denning a new set of reductions that can be executed locally and simultaneously; furthermore, it is shown that a constant fraction of the vertices in the graph are reducible. This is the best known approximation scheme when the number of processors available is linear; parallel implementation of known sequential algorithms requires many more processors.Joseph Naor was supported by Contract ONR N00014-88-K-0166. Most of this work was done while he was a post-doctoral fellow at the Department of Computer Science, University of Southern California, Los Angeles, CA 90089-0782, USA.  相似文献   

13.
We address the problem of approximating aminimum cycle cover in parallel. We give the first efficient parallel algorithm for finding an approximation to aminimum cycle cover. Our algorithm finds a cycle cover whose size is within a factor of 0(1 +n logn/(m + n) of the minimum-sized cover usingO(log2 n) time on (m + n)/logn processors.Research supported by ONR Grant N00014-88-K-0243 and DARPA Grant N00039-88-C0113 at Harvard University.Research supported by a graduate fellowship from GE. Additional support provided by Air Force Contract AFOSR-86-0078, and by an NSF PYI awarded to David Shmoys, with matching funds from IBM, Sun Microsystems, and UPS.  相似文献   

14.
Spatial regularity amidst a seemingly chaotic image is often meaningful. Many papers in computational geometry are concerned with detecting some type of regularity via exact solutions to problems in geometric pattern recognition. However, real-world applications often have data that is approximate, and may rely on calculations that are approximate. Thus, it is useful to develop solutions that have an error tolerance.

A solution has recently been presented by Robins et al. [Inform. Process. Lett. 69 (1999) 189–195] to the problem of finding all maximal subsets of an input set in the Euclidean plane that are approximately equally-spaced and approximately collinear. This is a problem that arises in computer vision, military applications, and other areas. The algorithm of Robins et al. is different in several important respects from the optimal algorithm given by Kahng and Robins [Patter Recognition Lett. 12 (1991) 757–764] for the exact version of the problem. The algorithm of Robins et al. seems inherently sequential and runs in O(n5/2) time, where n is the size of the input set. In this paper, we give parallel solutions to this problem.  相似文献   


15.
In this paper, a parallel algorithm is presented to find all cut-vertices and blocks of an interval graph. If the list of sorted end points of the intervals of an interval graph is given then the proposed algorithm takes O(log n) time and O(n/log n) processors on an EREW PRAM, if the sorted list is not given then the time and processors complexities are respectively O(log n) and O(n).  相似文献   

16.
Previous research on developing parallel triangulation algorithms concentrated on triangulating planar point sets.O(log3 n) running time algorithms usingO(n) processors have been developed in Refs. 1 and 2. Atallah and Goodrich(3) presented a data structure that can be viewed as a parallel analogue of the sequential plane-sweeping paradigm, which can be used to triangulate a planar point set inO(logn loglogn) time usingO(n) processors. Recently Merks(4) described an algorithm for triangulating point sets which runs inO(logn) time usingO(n) processors, and is thus optimal. In this paper we develop a parallel algorithm for triangulating simplicial point sets in arbitrary dimensions based on the idea of the sequential algorithm presented in Ref. 5. The algorithm runs inO(log2 n) time usingO(n/logn) processors. The algorithm hasO(n logn) as the product of the running time and the number of processors; i.e., an optimal speed-up.  相似文献   

17.
A parallel two-list algorithm for the knapsack problem   总被引:10,自引:0,他引:10  
An n-element knapsack problem has 2n possible solutions to search over, so a task which can be accomplished in 2″ trials if an exhaustive search is used. Due to the exponential time in solving the knapsack problem, the problem is considered to be very hard. In the past decade, much effort has been done in order to find techniques which could lead to practical algorithms with reasonable running time. In 1994, Chang et al. proposed a brilliant parallel algorithm, which needs O(2n/8) processors to solve the knapsack problem in O(2n/2) time; that is, the cost of Chang et al.'s parallel algorithm is O(25n/8). In this paper, we propose a parallel algorithm to improve Chang et al.'s parallel algorithm by reducing the time complexity to be O(23n/8) under the same O(2n/8) processors available. Thus, the proposed parallel algorithm has a cost of O(2n/2). It is an improvement over previous literature. We believe that the proposed parallel algorithm is pragmatically feasible at the moment when multiprocessor systems become more and more popular.  相似文献   

18.
The connected vertex cover problem is a variant of the vertex cover problem, in which a vertex cover is additional required to induce a connected subgraph in a given connected graph. The problem is known to be NP-hard and to be at least as hard to approximate as the vertex cover problem is. While several 2-approximation NC algorithms are known for vertex cover, whether unweighted or weighted, no parallel algorithm with guaranteed approximation is known for connected vertex cover. Moreover, converting the existing sequential 2-approximation algorithms for connected vertex cover to parallel ones results in RNC algorithms of rather high complexity at best.In this paper we present a 2-approximation NC (and RNC) algorithm for connected vertex cover (and tree cover). The NC algorithm runs in O(log2n) time using O(Δ2(m+n)/logn) processors on an EREW-PRAM, while the RNC algorithm runs in O(logn) expected time using O(m+n) processors on a CRCW-PRAM, when a given graph has n vertices and m edges with maximum vertex degree of Δ.  相似文献   

19.
We describe ann-processor,O(log(n) log log(n))-time CRCW algorithm to construct the Voronoi diagram for a set ofn point-sites in the plane.A preliminary version of this paper was presented at the 17th EATCS ICALP meeting at Warwick, England, in July 1990.Supported by the US NSF under Grants CCR 890221 and CCR 8906949.Supported by the US NSF under Grants CCR 8810568, CCR-9003299, and IRI-9116843, and by the NSF and DARPA under Grant CCR 8908092.Supported by the EU Esprit program under BRAs 3075 (ALCOM) and 7141 (ALCOM II).  相似文献   

20.
In this paper we describe and implement a parallel algorithm to find approximate solutions for the Closest String Problem (CSP). The CSP, also known as Motif Finding problem, has applications in Coding Theory and Computational Biology. The CSP is NP-hard which motivates us to think about heuristics to solve large instances. Several approximation algorithms have been designed for the CSP, but all of them have a poor performance guarantee. Recently some researchers have shown empirically that integer programming techniques can be successfully used to solve moderate-size instances (10–30 strings each of which is 300–800 characters long) of the CSP. However, real-world instances are larger than those tested. In this paper we show how a simple heuristic can be used to find near-optimal solutions to that problem. We implemented a parallel version of this heuristic and report computational experiments on large-scale instances. These results show the effectiveness of our approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号