首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A combination of simulated and experimental data has been used to investigate the size range of nanovoids that can be detected in atom probe tomography data. Simulated atom probe tomography data have revealed that nanovoids as small as 1 nm in diameter can be detected in atom probe tomography data with the use of iso-density surfaces. Iso-density surfaces may be used to quantify the size, morphology and number density of nanovoids and other variations in density in atom probe tomography data. Experimental data from an aluminum-yttrium-iron metallic glass ribbon have revealed the effectiveness of this approach. Combining iso-density surfaces with atom maps also permits the segregation of solute to the nanovoids to be investigated. Field ion microscopy and thin section atom maps have also been used to detect pores and larger voids.  相似文献   

2.
Cu80Fe20 and Cu50Fe50 were mechanically alloyed from the pure elements by ball milling for 36 h. The alloy powder was compacted into tablets at room temperature by applying a pressure of 5 GPa. Characterization of the Cu80Fe20) and Cu50Fe50 alloys was carried out by high-resolution transmission electron microscopy (HREM), atom probe field ion microscopy and three-dimensional atom probe (3DAP). The grain size of the nanocrystalline microstructure of the ball-milled alloys observed with HREM varies between 3 and 50 nm.Atom probe and 3DAP measurements indicate that the as-prepared state is a highly supersaturated alloy, in which the individual nanocrystals have largely varying composition. Fe concentration in Cu was found to range from about 8 to 50 at%. It is concluded that by ball milling and compacting an alloy is produced which on a nanometer scale is heterogeneous with respect to morphology and composition.  相似文献   

3.
More elaborated specimen preparation techniques for atom probe analysis were developed using a focused ion beam with a sample lift-out system so as to expand the application field in steel materials. The techniques enable atom probe analysis of sample steel at site-specific regions of interest. The preferable form of the needle specimen was provided by electrostatic field calculation using a finite element method. The new techniques were applied to the observation of a bainite-ferrite interface in a low carbon steel, and atomic-scale partitioning and segregation of alloying elements at the phase interface were directly observed in three dimensions.  相似文献   

4.
The solute segregation at grain boundaries (GBs) of an ultrafine grained (UFG) Al-Zn-Mg-Cu alloy processed by equal-channel angular pressing (ECAP) at 200 °C was characterised using three-dimensional atom probe. Mg and Cu segregate strongly to the grain boundaries. In contrast, Zn does not always show clear segregation and may even show depletion near the grain boundaries. Trace element Si selectively segregates at some GBs. An increase in the number of ECAP passes leads to a decrease in the grain size but an increase in solute segregation at the boundaries. The significant segregation of alloying elements at the boundaries of ultrafine-grained alloys implies that less solutes will be available in the matrix for precipitation with a decrease in the average grain size.  相似文献   

5.
The applicability of the binomial frequency distribution is outlined for the analysis of the evolution nanoscale atomic clustering of dilute solute in an alloy subject to thermal ageing in 3D atom probe data. The conventional chi(2) statistics and significance testing are demonstrated to be inappropriate for comparison of quantity of solute segregation present in two or more different sized system. Pearson coefficient, mu, is shown to normalize chi(2) with respect to sample size over an order of magnitude. A simple computer simulation is implemented to investigate the binomial analysis and infer meaning in the measured value of mu over a series of systems at different solute concentrations and degree of clustering. The simulations replicate the form of experimental data and demonstrate the effect of detector efficiency to significantly underestimate the measured segregation. The binomial analysis is applied to experimental atom probe data sets and complementary simulations are used to interpret the results.  相似文献   

6.
Laser assisted field evaporation using ultraviolet (UV) wavelength gives rise to better mass resolution and signal-to-noise ratio in atom probe mass spectra of metals, semiconductors and insulators compared to infrared and green lasers. Combined with the site specific specimen preparation techniques using the lift-out and annular Ga ion milling in a focused ion beam machine, a wide variety of materials including insulating oxides can be quantitatively analyzed by the three-dimensional atom probe using UV laser assisted field evaporation. After discussing laser irradiation conditions for optimized atom probe analyses, recent atom probe tomography results on oxides, semiconductor devices and grain boundaries of sintered magnets are presented.  相似文献   

7.
Fitting L  Thiel S  Schmehl A  Mannhart J  Muller DA 《Ultramicroscopy》2006,106(11-12):1053-1061
A screw dislocation network at the low-angle SrTiO3/Nb:SrTiO3 twist grain boundary has been analyzed by annular dark field (ADF) imaging and spatially resolved electron energy loss spectroscopy (EELS) in a scanning transmission electron microscope (STEM). The cores of one set of dislocations running parallel to the beam direction appear dark in the ADF STEM images. EELS on the dislocation core reveals a reduced Sr/Ti ratio compared to the bulk suggesting Sr-deficient cores. The second set of dislocations, orthogonal to the latter, is imaged by its strain field using low-angle annular dark field (LAADF) imaging. Multislice image simulations suggest channeling of the electron probe on the atomic columns for small tilts, theta < 1 degree, where the Sr columns act as beam guides. Only for larger tilts is the channeling effect strongly reduced and the fringe contrast approaches the value predicted by a purely incoherent imaging model. Ti-L(2,3) EELS across the dislocation core shows an asymmetry between the EELS and the ADF signal which cannot be explained by the geometry or beam broadening. This asymmetry might be explained by an effective nonlocal potential representing inelastic scattering in EELS.  相似文献   

8.
Yao L  Cairney JM  Zhu C  Ringer SP 《Ultramicroscopy》2011,111(6):648-651
This paper details the effects of systematic changes to the experimental parameters for atom probe microscopy of microalloyed steels. We have used assessments of the signal-to-noise ratio (SNR), compositional measurements and field desorption images to establish the optimal instrumental parameters. These corresponded to probing at the lowest possible temperature (down to 20 K) with the highest possible pulse fraction (up to 30%). A steel containing a fine dispersion of solute atom clusters was used as an archetype to demonstrate the importance of running the atom probe at optimum conditions.  相似文献   

9.
Field ion specimens have been successfully fabricated from samples of metamorphic magnetite crystals (Fe3O4) extracted from a polymetamorphosed, granulite-facies marble with the use of a focused ion beam. These magnetite crystals contain nanometer-scale, disk-shaped inclusions making this magnetite particularly attractive for investigating the capabilities of atom probe field ion microscopy (APFIM) for geological materials. Field ion microscope images of these magnetite crystals were obtained in which the observed size and morphology of the precipitates agree with previous results. Samples were analyzed in the energy compensated optical position-sensitive atom probe. Mass spectra were obtained in which peaks for singly ionized 16O, 56Fe and 56FeO and doubly ionized 54Fe, 56Fe and 57Fe peaks were fully resolved. Manganese and aluminum were observed in a limited analysis of a precipitate in an energy compensated position sensitive atom probe.  相似文献   

10.
Observations of grain boundary dislocations in [011] tilt bicrystals of aluminium after high temperature shear tests have led to a concept for grain boundary sliding that involves extrinsic dislocations moving through an array of structural dislocations. Each extrinsic dislocation consists of a group of structural dislocations with closer than normal network spacing caused by the presence of an extra dislocation with the same Burgers vector. The extrinsic dislocation exhibits a long range strain field and can move individually through the array of structural dislocations. The movement involves displacements in the structural network analogous to atom displacements during crystal slip. The width of the extrinsic dislocation on the grain boundary plane is dependent on the degree of accommodation of the extra dislocation by the structural array and this appears to increase with increasing density of structural dislocations.  相似文献   

11.
Dislocations in the spinodal alloy Fe(30)Ni(20)Mn(25)Al(25), which is composed of alternating BCC and B2 (ordered BCC) phases, have been investigated using weak-beam transmission electron microscopy (TEM). The alloy was compressed at room temperature in an as-hot-extruded state to strains of approximately 3% for post-mortem dislocation analysis. Dislocations with a/2<111> Burgers vectors were found to glide in pairs on both {110} and {112} slip planes. TEM in situ straining experiments were also performed on both the as-extruded alloy and an arc-melted alloy. The in situ straining observations confirmed that dislocations were able to pass between both spinodal phases. Partial dislocation separations were relatively wide in the BCC phase and narrow in the B2 phase. Dislocation glide, as opposed to twinning (both of which have been observed in other BCC-based spinodals), was also found to be the only room temperature deformation mechanism.  相似文献   

12.
A direct colour superposition technique has been used to study two dislocations in W, using He field-ion imaging at 77°K. Limitations due to instrumentation and field-ion microscopy are discussed. A single spiral and a double spiral on (112) W were each dissected, by field evaporation, through three successive atom layers, and apparent core shapes and dimensions were determined. The shapes were irregular with diameters of at most 0.5–2 nm for the single spiral and 0.5–1.7 nm for the double spiral. Observed displacements in the positions of the core regions may be associated with dislocation movement induced by the high electric field needed for the observations.  相似文献   

13.
A medium carbon martensitic steel containing nanometer scale secondary hardening carbides and intermetallic particles is investigated by field ion microscopy and atom probe tomography. The interaction between the concomitant precipitations of both types of particles is investigated. It is shown that the presence of the intermetallic phase affects the nucleation mechanism and the spatial distribution of the secondary hardening carbides, which shifts from heterogeneous on dislocations to heterogeneous on the intermetallic particles.  相似文献   

14.
The nature of damage produced by low energy Ar+ ion and Ar atom milling in the II–VI semiconductors CdTe, ZnS and ZnSe is studied in detail by conventional and high resolution transmission electron microscopy. It is demonstrated that the damage consists of dense arrays of small dislocation loops near to each milled surface. When ion or atom milling of this type is used for thin specimen preparation prior to microscopy the loop arrays can seriously obscure images and so complicate their interpretation. This problem concerning the presence of artifactual defects can be greatly reduced by the use of reactive I+ ion milling for specimen thinning and, in the case of CdTe, spurious dislocation loop formation can be completely suppressed.  相似文献   

15.
Miller MK  Zhang Y 《Ultramicroscopy》2011,111(6):672-675
The next generations of advanced energy systems will require materials that can withstand high doses of irradiation at elevated temperatures. Therefore, a methodology has been developed for the fabrication of high-dose ion-irradiated atom probe tomography specimens at a specific dose with the use of a focused ion beam milling system. The method also enables the precise ion dose of the atom probe tomography specimen to be estimated from the local concentration of the implanted ions. The method has been successfully applied to the characterization of the distribution of nanoclusters in a radiation-tolerant 14YWT nanostructured ferritic steel under ion irradiation to doses up to 400 displacements per atom.  相似文献   

16.
Local extraction electrodes offer several crucial advantages for operation of atom probes. Because of the proximity of the local extraction electrode to the specimen, the electric field produced at the specimen apex by a given voltage is enhanced and the voltage required for field evaporation is reduced. In a voltage-pulsed atom probe, the absolute magnitude of the energy uncertainty is correspondingly reduced. High mass resolution (m/deltam > 1000) may therefore be obtained by accelerating the evaporated ions to a greater total potential after the local extraction electrode. The low extraction voltage may also be pulsed rapidly (100 ps rise time) and at high repetition rates (up to 10(5) pulses per second) using currently available solid-state pulsers. Furthermore, a local electrode and intermediate electrodes may be used as optical elements to control the image magnification. All of these benefits may be applied to any type of atom probe. Local-electrode atom probes (LEAP) should be especially advantageous for developing three-dimensional atom probes with high mass resolution and a large field of view. A sample has been developed that consists of many microtips formed on a planar sample using ion beam mask etching. Microtip samples are especially suited to LEAP. Analysis of electrically insulating samples may also be possible with microtip samples in a LEAP. This combination of features suggests flexible, high speed, high mass resolution atom probes that can work with either conventional needle-shaped specimens or the new style of planar microtip specimens.  相似文献   

17.
In this contribution the homogeneity of mechanically alloyed Fe–Cu powders for two different compositions (Fe-10 and Fe-2.5 at%Cu) has been systematically characterised by atom probe tomography. Since Fe–Cu exhibits the Invar effect, it is among the most attractive systems for technical application. Furthermore, this system is immiscible and characterised by a large positive heat of mixing. In combination with the widespread application and accessibility, this predestines Fe–Cu as a binary model alloy to elaborate the enforced nonequilibrium enhanced solubility for immiscible systems. Depending on the parameters composition and milling time, results on the extension of the solubility limit and on the homogeneity of the alloy are presented, discussed and compared to earlier works. Only for the alloy with lower Cu content and for the prolonged milling time of 50 h, chemical homogeneity of the sample as measured by the atom probe was fully reached on the nano-scale. For all other parameter combinations homogeneity could not be achieved, even for long milling times and for those samples that appear to be homogeneous via X-ray analysis. Moreover, impurities were determined, mostly stemming from the fabrication procedure. The arrangement and homogeneity of the most common impurity, oxygen, was evaluated from atom probe data for different samples.  相似文献   

18.
The field distribution and the ion trajectories close to the tip surface are known to mainly control the contrast of field-ion microscopy and the resolution of the three-dimensional atom probe. The proper interpretation of images provided by these techniques requires the electric field and the ion trajectories to be determined accurately. A model has been developed in order to compute the ion trajectories close to a curved emitting surface modelled at the atomic scale. In this model, both the gradual change of the tip surface and the chemical nature of atoms were taken into account. Predictions and results given by this approach are shown to be in excellent agreement with experiments. The calculated electric field at the tip surface is consistent with field-ion microscopy contrasts. The preferential retention of surface atoms and the order of evaporation were correctly simulated. The ion trajectories were successfully described. In this way, the crucial problem of trajectory overlap and local magnification could be investigated. These simulations not only lead to a new understanding of the physical basis of image formation, but also have a predictive value.  相似文献   

19.
Molybdenum and its alloys are potential materials for high-temperature applications. However, molybdenum is susceptible to embrittlement because of oxygen segregation at the grain boundaries. In order to alleviate the embrittlement small amounts of zirconium were alloyed to a solid solution of Mo-1.5Si alloy. Two Mo-based alloys, namely Mo-1.5Si and Mo-1.5Si-1Zr, were investigated by the complementary high-resolution methods transmission electron microscopy and atom probe tomography. The Mo-1.5Si alloy shows a polycrystalline structure with two silicon-rich intermetallic phases Mo5Si3 and Mo3Si located at the grain boundaries and within the grains. In addition, small clusters with up to 10 at% Si were found within the molybdenum solid solution. Addition of a small amount of zirconium to Mo-1.5Si leads to the formation of two intermetallic phases Mo2Zr and MoZr2, which are located at the grain boundaries as well as within the interior of the grain. Transmission electron microscopy shows that small spherical Mo-Zr-rich precipitates (<10 nm) decorate the grain boundaries. The stoichiometry of the small precipitates was identified as Mo2Zr by atom probe tomography. No Si-enriched small precipitates were detected in the Mo-1.5Si-1Zr alloy. It is concluded that the presence of zirconium hinders their formation.  相似文献   

20.
The interrelationship between coherency and solute segregation at metal/metal-nitride heterophase interfaces is studied on a subnanometer scale by both atom-probe field-ion and electron microscopies for molybdenum nitride precipitates in Fe-2 at% Mo-X, where X = 0.4 at% Sb or 0.5 at% Sn. Internal nitridation at 550 degrees C generates thin platelet-shaped molybdenum nitride precipitates, while nitridation at 600 degrees C produces, in addition to the small-scale structure with precipitates of the thin-platelet type, a much coarser structure of thick plates and spheroidal precipitates. The solute species Sn and Sb segregate at the heterophase interfaces of the coarse precipitates and Gibbsian interfacial excesses of up to 7 x 10(18) M(-2) are measured. The segregation is related to the presence of misfit dislocations at the interfaces of the coarse preciptitates, while the thin plates remain coherent with no detectable segregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号