首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the problem of adaptive fuzzy tracking control is investigated for switched nonlinear pure-feedback systems under arbitrary switching. By utilising mean value theorem, the considered pure-feedback systems are transformed into a class of switched nonlinear strict-feedback systems. Compared with the existing results, a priori knowledge of control directions is not required. On the other hand, differing from the existing literatures, the piecewise switched adaptive laws are designed to replace the common adaptive laws, which can reduce the conservativeness. Furthermore, the difficulties from how to deal with the unknown control directions and design common virtual control are overcome. Based on the backstepping technique and the common Lyapunov functions, an adaptive fuzzy control scheme is developed to guarantee that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded with the tracking error converging to a neighbourhood of the origin. Simulation results are provided to demonstrate the effectiveness of the proposed techniques.  相似文献   

2.
This paper is concerned with the problem of adaptive fuzzy output tracking control for a class of nonlinear pure-feedback stochastic systems with unknown dead-zone. Fuzzy logic systems in Mamdani type are used to approximate the unknown nonlinearities, then a novel adaptive fuzzy tracking controller is designed by using backstepping technique. The control scheme is systematically derived without requiring any information on the boundedness of dead-zone parameters (slopes and break-points) and the repeated differentiation of the virtual control signals. The proposed adaptive fuzzy controller guarantees that all the signals in the closed-loop system are bounded in probability and the system output eventually converges to a small neighbourhood of the desired reference signal in the sense of mean quartic value. Simulation results further illustrate the effectiveness of the proposed control scheme.  相似文献   

3.
The problem of adaptive output feedback stabilisation is addressed for a more general class of non-strict-feedback stochastic nonlinear systems in this paper. The neural network (NN) approximation and the variable separation technique are utilised to deal with the unknown subsystem functions with the whole states. Based on the design of a simple input-driven observer, an adaptive NN output feedback controller which contains only one parameter to be updated is developed for such systems by using the dynamic surface control method. The proposed control scheme ensures that all signals in the closed-loop systems are bounded in probability and the error signals remain semi-globally uniformly ultimately bounded in fourth moment (or mean square). Two simulation examples are given to illustrate the effectiveness of the proposed control design.  相似文献   

4.
In this paper, we focus on the problem of adaptive stabilisation for a class of interconnected uncertain switched stochastic nonlinear systems. Classical adaptive and backstepping technique are employed for control synthesis. Instead of estimating the switching parameters directly, we design the adaptive controller based on the estimations of bounds on switching time-varying parameters. A smooth function is introduced to deal with the difficulties caused by unknown interactions and tuning function approach is used to circumvent the overparameter problem. It is shown that under the action of the proposed controller all the signals of the overall closed-loop systems are globally uniformly bounded in probability under arbitrary switching. Simulation results are presented to illustrate the effectiveness of the proposed approach.  相似文献   

5.
This paper investigates the problem of adaptive neural control design for a class of single‐input single‐output strict‐feedback stochastic nonlinear systems whose output is an known linear function. The radial basis function neural networks are used to approximate the nonlinearities, and adaptive backstepping technique is employed to construct controllers. It is shown that the proposed controller ensures that all signals of the closed‐loop system remain bounded in probability, and the tracking error converges to an arbitrarily small neighborhood around the origin in the sense of mean quartic value. The salient property of the proposed scheme is that only one adaptive parameter is needed to be tuned online. So, the computational burden is considerably alleviated. Finally, two numerical examples are used to demonstrate the effectiveness of the proposed approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, an adaptive fault-tolerant fixed-time control problem is considered via command-filter technique for stochastic nonlinear systems with sensor fault and actuator hysteresis. With the application of command-filtering technique, a novel command-filter compensate mechanism is designed, which implies that the improved control scheme not only eliminates “the explosion of complexity” but also realizes the compensate signal is bounded within fixed-time interval. The unavailability of state variables caused by sensor fault is solved by applying parameter separation and regrouping approach. Meanwhile, an adaptive auxiliary signal is designed to cope with the backlash-like hysteresis phenomenon, which can avoid singularity, reduce chattering, and facilitate controller design. Combining backstepping technique and Lyapunov stability theorem, an adaptive fault-tolerant control approach is developed, which can guarantee all closed-loop signals remain semi-globally practical fixed-time stable (SGPFS) in probability. The validity of the proposed strategy is illustrated by simulation examples.  相似文献   

7.
An observer-based adaptive fuzzy control is presented for a class of nonlinear systems with unknown time delays. The state observer is first designed, and then the controller is designed via the adaptive fuzzy control method based on the observed states. Both the designed observer and controller are independent of time delays. Using an appropriate Lyapunov-Krasovskii functional, the uncertainty of the unknown time delay is compensated, and then the fuzzy logic system in Mamdani type is utilized to approximate the unknown nonlinear functions. Based on the Lyapunov stability theory, the constructed observer-based controller and the closed-loop system are proved to be asymptotically stable. The designed control law is independent of the time delays and has a simple form with only one adaptive parameter vector, which is to be updated on-line. Simulation results are presented to demonstrate the effectiveness of the proposed approach.  相似文献   

8.
一类非线性离散系统的直接自适应模糊控制   总被引:1,自引:0,他引:1  
针对一类含延迟非线性离散系统,提出了一种直接自适应模糊控制器设计的新方案.将系统用T-S模糊模型来表示,并基于并行分布补偿(PDC)基本思想设计了一种具有未知参数的模糊控制器,同时采用梯度下降算法对该控制器的参数进行在线辨识.通过输入到状态稳定(ISS)方法,证明了系统输出和参考输出的误差有界且满足一定的平均性能.仿真表明本方法的有效性.  相似文献   

9.
An adaptive fuzzy control approach is proposed for a class of multiple-input–multiple-output (MIMO) nonlinear systems with completely unknown non-affine functions. The global implicit function theorem is first used to prove the existence of an unknown ideal implicit controller that can achieve the control objectives. Within this scheme, fuzzy systems are employed the approximate the unknown ideal implicit controller, and robustifying control terms are used to compensate the approximation errors and external disturbances. The adjustable parameters of the used fuzzy systems are deduced from the stability analysis of the closed-loop system in the sense of Lyapunov. To show the efficiency of the proposed controllers, two simulation examples are presented.  相似文献   

10.
针对一类不确定非线性系统,基于backstepping方法提出了一种新的鲁棒自适应模糊控制器设计方案。该方案通过引入最优逼近误差的自适应补偿项和新的鲁棒项,削减建模误差和参数估计误差的影响,从而在稳定性分析中取消了要求逼近误差平方可积或逼近误差的上确界已知的条件。理论分析证明了闭环系统状态有界,跟踪误差收敛到零的较小邻域内。仿真结果表明了该方法的有效性。  相似文献   

11.
In this paper, an adaptive fuzzy decentralized backstepping output feedback control approach is proposed for a class of uncertain large‐scale stochastic nonlinear systems without the measurements of the states. The fuzzy logic systems are used to approximate the unknown nonlinear functions, and a fuzzy state observer is designed for estimating the unmeasured states. Using the designed fuzzy state observer, and by combining the adaptive backstepping technique with dynamic surface control technique, an adaptive fuzzy decentralized output feedback control approach is developed. It is shown that the proposed control approach can guarantee that all the signals of the resulting closed‐loop system are semi‐globally uniformly ultimately bounded in probability, and the observer errors and the output of the system converge to a small neighborhood of the origin by choosing appropriate design parameters. A simulation example is provided to show the effectiveness of the proposed approaches. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
一类非线性系统的间接自适应模糊控制器的研究   总被引:12,自引:0,他引:12       下载免费PDF全文
张天平 《控制与决策》2002,17(2):199-202
研究一类不确定非线性系统的间适应模糊控制问题。基于Wang提出的监督控制方案,利用Ⅰ型模糊系统的逼近能力,提出一种自适应模糊控制器设计的新方案,该方案通过引入最优逼近误差的自适应补偿项来消除建模误差的影响,从而在稳定性分析中取消了要求逼近误差平方可积或逼近误差的上确界已知的条件,理论分析证明了闭环控制系统是全局稳定的,跟踪误差收敛到零,仿真结果表明了该方法的有效性。  相似文献   

13.
一类MIMO非线性系统的直接自适应模糊滑模控制   总被引:4,自引:0,他引:4  
针对一类具有下三角形函数控制增益矩阵的非线性系统, 基于滑模控制原理, 并利用Ⅱ型模糊系统的逼近能力, 提出了一种直接自适应模糊滑模控制器设计的新方案. 通过引入积分型李雅普诺夫函数及逼近误差自适应补偿项, 证明了闭环系统是全局稳定的, 跟踪误差收敛到零. 仿真结果表明了该方法的有效性.  相似文献   

14.
一类非线性系统的积分变结构模糊自适应跟踪控制   总被引:1,自引:0,他引:1  
针对一类具有未知常数控制增益的不确定非线性系统,基于变结构控制原理,并利用具有非线性可调参数的模糊系统逼近等价控制,提出一种具有监督控制器的积分变结构模糊自适应跟踪控制策略.该策略通过监督控制器保证闭环系统所有信号有界.进一步,通过引入最优逼近误差的自适应补偿项来消除建模误差的影响.理论分析证明了跟踪误差能够收敛到零.仿真结果表明了该方法的有效性.  相似文献   

15.
In this paper,a new fuzzy adaptive control approach is developed for a class of SISO uncertain pure-feedback nonlinear systems with immeasurable states.Fuzzy logic systems are utilized to approximate the unknown nonlinear functions;and the filtered signals are introduced to circumvent algebraic loop systems encountered in the implementation of the controller,and a fuzzy state adaptive observer is designed to estimate the immeasurable states.By combining the adaptive backstepping technique,an adaptive fuzzy output feedback control scheme is developed.It is proven that the proposed control approach can guarantee that all the signals of the resulting closed-loop system are semi-globally uniformly ultimately bounded(SGUUB),and the observer and tracking errors converge to a small neighborhood of the origin by appropriate choice of the design parameters.Simulation studies are included to illustrate the efectiveness of the proposed approach.  相似文献   

16.
针对单输入单输出不确定非线性系统提出了一种自适应鲁棒模糊控制算法.该算法通过设计观测器来估计系统的状态向量,因此不要求假设系统的状态向量是可测的.在这个算法中,主要的假设为最优逼近参数向量与标称参数向量之差的范数和逼近误差的界限是未知的.通过只对未知界限估计的调节,该算法减轻了在线计算量并且提高了系统的鲁棒性.所设计的自适应鲁棒模糊控制算法保证了闭环系统的所有信号是一致有界的并且跟踪误差估计收敛到一个小的零邻域内.仿真例子证实了所提方法的可行性.  相似文献   

17.
This paper is concerned with the problem of adaptive fuzzy decentralised output-feedback control for a class of uncertain stochastic nonlinear pure-feedback large-scale systems with completely unknown functions, the mismatched interconnections and without requiring the states being available for controller design. With the help of fuzzy logic systems approximating the unknown nonlinear functions, a fuzzy state observer is designed estimating the unmeasured states. Therefore, the nonlinear filtered signals are incorporated into the backstepping recursive design, and an adaptive fuzzy decentralised output-feedback control scheme is developed. It is proved that the filter system converges to a small neighbourhood of the origin based on appropriate choice of the design parameters. Simulation studies are included illustrating the effectiveness of the proposed approach.  相似文献   

18.
In this paper, the fault-tolerant control (FTC) problem is investigated for a class of multi-input multiple output nonlinear systems with time-varying delays, and an active FTC method is proposed. The controlled system contains unknown nonlinear functions, unknown control gain functions and actuator faults, which integrates time-varying bias and gain faults. Then, fuzzy logic systems are used to approximate the unknown nonlinear functions and unknown control gain functions, fuzzy adaptive observers are used for fault detection and isolation. Further, based on the obtained information, an accommodation method is proposed for compensating the actuator faults. It is shown that all the variables of the closed-loop system are semi-globally uniformly bounded, the tracking error converges to an arbitrary small neighbourhood of the origin. A simulation is given to demonstrate the effectiveness of the proposed approach.  相似文献   

19.
This paper investigates the problem of fault-tolerant control (FTC) for a class of switched nonlinear systems. These systems are under arbitrary switchings and are subject to both lock-in-place and loss-of-effectiveness actuator faults. In the control design, fuzzy logic systems are used to identify the unknown switched nonlinear systems. Under the framework of the backstepping control design, FTC, fuzzy adaptive control and common Lyapunov function stability theory, an adaptive fuzzy control approach is developed. It is proved that the proposed control approach can guarantee that all the signals in the closed-loop switched system are semi-globally uniformly ultimately bounded (SGUUB) and the tracking error remains an adjustable neighbourhood of the origin. Two simulation examples are provided to illustrate the effectiveness of the proposed approach.  相似文献   

20.
A new approach of direct adaptive control of single input single output nonlinear systems in affine form using single-hidden layer neural network (NN) is introduced. In contrast to the algorithms in the literature, the weights adaptation laws are based on the control error and not on the tracking error or its filtered version. Since the control error is being expressed in terms of the NN controller, hence its weights updating laws are obtained via back-propagation concept. A fuzzy inference system (FIS) with heuristically defined rules is introduced to provide an estimate of this error based on the past history of the system behaviour. The stability of the closed loop is studied using Lyapunov theory. A fixed structure is then proposed for the FIS and the design parameters reduce to the parameters of the NN. The method is reproducible and does not require any pre-training of the network weights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号