首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The transient flow behaviour in Timetal 834 titanium alloy was studied in the temperature range between 400 °C and 475 °C by means of stress relaxation and reloading during tensile testing at a strain rate of 6.67 × 10−4 s−1. The increment in flow stress during reloading (Δσf) and the decrement in flow stress during stress relaxation (Δσr) were measured at different strains at each temperature. The observation of maximum value of Δσf and Δσr, normalized with respect to the Young's modulus at the corresponding temperature, confirmed that the maximum dynamic strain aging (DSA) effect in this alloy occurs at 450 °C.  相似文献   

2.
The Ti–50.7%Ni (atom fraction) alloy rods were compressive stress aged at 400 °C, 450 °C and 500 °C for different time, their strain behaviors accompanied by temperature elevation were investigated, and their microstructures were observed. It is found that the compressive stress aged TiNi alloy rod displays an obvious contractive strain behavior in the stress direction as the temperature is elevated from approximately 55–75 °C. Compressive stress causes the parallel alignment of the aging precipitate Ti3Ni4 in the TiNi alloy, which controls the martensitic transformation (B19′ transformation) and its reverse transformation, leading to its contractive strain behavior accompanied by temperature elevation. The contractive strain of the TiNi alloy compressive stress aged at 400 °C for 100 h is increased with increasing compressive stress up to 140 MPa. Higher aging temperature and longer aging time lead to the coarsening of the precipitates and the enlarging of the inter-precipitate spacing, and therefore result in a decrease in the contractive strain.  相似文献   

3.
Total strain controlled low cycle fatigue tests on IMI 834 have been conducted in air in the temperature range between 375 and 500 °C at a temperature interval of 25 °C at the nominal strain rate of 6.67 × 10−4 s−1. The observed maximum peak stress ratio, minimum half-life plastic strain range and lower fatigue life at 425 °C indicates the occurrence of dynamic strain aging (DSA). Pronounced deformation bands, increased dislocation density and non-uniform dispersion of dislocations inside primary α grains observed by the study of transmission electron microscopy supports the occurrence of dynamic strain aging. Initial cyclic softening was attributed to shearing of Ti3Al precipitates as revealed by TEM evidences.  相似文献   

4.
We report on in situ fatigue tests performed in an environmental scanning electron microscope on high-temperature titanium alloy IMI 834 in the range from room temperature to 600 °C both in vacuum and water vapor environments. At low and intermediate temperatures (400 °C) cracks were found to initiate at slip bands independent of the actual environment. However, crack initiation in water vapor occurred at a much lower number of cycles. At 600 °C, the environmental effect became even more pronounced as cracks could easily form in an oxygen-enriched brittle subsurface layer. Moreover, fatigue life at this temperature was found to decrease distinctly in the case of cycling in pure water vapor as compared to loading in ambient air.  相似文献   

5.
During hot compression, Mg17Al12 (β) precipitates show strong influence on the microstructural changes of 415 °C-24 h homogenized AZ91 alloy. When compressed at 300 °C and 350 °C, dynamic recrystallization (DRX) only occurs near grain boundaries with discontinuous β precipitate pinning at the newly DRXed grain boundaries. With increasing compression temperature and decreasing strain rate, the β-precipitating region expands; however, the amount of pinning precipitates decreases, resulting in increases in the DRX ratio and average DRXed grain size. With a compression ratio of only 50%, the specimen compressed at 350 °C and a strain rate of 0.2 s−1 (designated 350 °C-0.2 s−1 compressed specimen) shows an ultimate tensile strength (UTS) of 334 MPa, a 0.2% proof stress (PS) of 195 MPa and an enough elongation of 17.9%. After a subsequent aging treatment at 180 °C, due to the large number of β precipitates, the strength of the compressed specimens are further improved, and the specimen peak aged after compression at 400 °C and 0.2 s−1 shows UTS of 364 MPa and PS of 248 MPa with a moderate elongation of 7.7%.  相似文献   

6.
In the present work, the study of dynamic strain aging (DSA) in near α titanium alloy Timetal 834 is reported in terms of internal hardening variables (kinematic and isotropic hardening variable). Total strain controlled low cycle fatigue tests have been conducted in air at 300 °C and from 400 °C to 500 °C at a temperature interval of 25 °C at nominal strain rates of 6.67 × 10−3 s−1. The alloy exhibits gradual cyclic softening till failure at 300 °C, whereas, it exhibits initial cyclic softening followed by marked cyclic hardening from 400 °C to 500 °C. The cyclic hardening is attributed to DSA phenomena, resulting due to increase in isotropic stress component. The observed maximum peak stress ratio, lower fatigue life and minimum half-life plastic strain range at 450 °C indicates the maximum effect of DSA at that temperature. The fatigue life of tensile and compressive hold at 450 °C was observed to be inferior as compared to pure fatigue tests.  相似文献   

7.
The influence of finishing rolling temperature (FRT) on dynamic strain aging (DSA) behavior and high-temperature resistance of a fire resistant steel microalloyed with Mo and Nb was investigated by means of tensile tests performed at temperatures ranging from 25 to 600 °C and strain rates of 10−4 to 10−1 s−1. In these steels, DSA manifestations are less intense than those observed for carbon steels and they take place at higher temperatures. The precipitation behavior of the steels was also considered. Hardness of samples heat treated at 100–600 °C displayed a maximum at 400 °C. Samples treated at this temperature and tensile tested at 600 °C did not show a higher yield stress than the untreated specimens. Results obtained indicated that DSA in the fire resistant steel might have a contribution for its fire resistance. The empirical activation energies related to the appearance of serrations on the stress–strain curves and to the maxima on the variation of tensile strength with temperature suggested that the high-temperature strengthening associated with DSA in this steel is the dynamic interaction of interstitial-substitutional solute dipoles and dislocations. The steel with lower FRT is more susceptible to DSA because of its higher amount of carbon in solid solution and showed better results in terms of high-temperature resistance.  相似文献   

8.
Equal channel angular extrusion (ECAE), with simultaneous application of back pressure, has been applied to the consolidation of 10 mm diameter billets of pre-alloyed, hydride–dehydride Ti–6Al–4V powder at temperatures ≤400 °C. The upper limit to processing temperature was chosen to minimise the potential for contamination with gaseous constituents potentially harmful to properties of consolidated product. It has been demonstrated that the application of ECAE with imposed hydrostatic pressure permits consolidation to in excess of 96% relative density at temperatures in the range 100–400 °C, and in excess of 98% at 400 °C with applied back pressure ≥175 MPa. ECAE compaction at 20 °C (back pressure = 262 MPa) produced billet with 95.6% relative density, but minimal green strength. At an extrusion temperature of 400 °C, the relative density increased to 98.3%, for similar processing conditions, and the green strength increased to a maximum 750 MPa. The relative density of compacts produced at 400 °C increased from 96.8 to 98.6% with increase in applied back pressure from 20 to 480 MPa, while Vickers hardness increased from 360 to 412 HV. The key to the effective low-temperature compaction achieved is the severe shear deformation experienced during ECAE, combined with the superimposed hydrostatic pressure.  相似文献   

9.
The hot deformation behavior and microstructure evolution of twin-roll-cast of Mg–2.9Al–0.9Zn–0.4Mn (AZ31) alloy has been studied using the processing map. The tensile tests were conducted in the temperature range of 150–400 °C and the strain rate range of 0.0004–4 s−1 to establish the processing map. The different efficiency domains and flow instability region corresponding to various microstructural characteristics have been identified as follows: (i) the continuous dynamic recrystallization (CDRX) domain in the range of 200–280 °C/≤0.004 s−1 with fine grains which provides a potential for warm deformation such as deep drawing; (ii) the discontinuous dynamic recrystallization (DDRX) domain around 400 °C at high strain rate (0.4 s−1 and above) with excellent elongation which can be utilized for forging, extrusion and rolling; (iii) the grain boundary sliding (GBS) domain at slow strain rate (below 0.004 s−1) above 350 °C appears abundant of cavities, which result in fracture and reduce the ductility of the adopted material; and (iv) the flow instability region which locates at the upper left of the processing map shows the metallographic feature of flow localization.  相似文献   

10.
J.-H. Ahn  Y.J. Kim  B.K. Kim 《Materials Letters》2006,60(29-30):3747-3751
Ni–Zr–Ti–Si–Sn/Cu metallic glass (BMG) composites were fabricated by magnetic compaction of powder mixtures. A considerable plastic deformation took place without apparent failure during the dynamic compaction even at room temperature and at a high strain rate. The BMG particles retained their amorphous phase after the dynamic magnetic compaction at 450 °C. The resulting Ni52.65Zr28.71Ti13.57Si1.33Sn3.74/60% Cu composite exhibited a remarkable tensile ductility at room temperature combined with high strength: tensile elongation of 28% and ultimate tensile stress up to 1.1 GPa.  相似文献   

11.
Ultrafine-grained Al–4Y–4Ni and Al–4Y–4Ni–0.9Fe (at.%) alloys were synthesized by the consolidation of atomized powders and subsequent hot extrusion. The mechanical behavior of these two alloys has been studied by performing uniaxial tension tests ranging from room temperature to 350 °C. These alloys, with high volume fraction of second-phase particles, exhibited ambient temperature tensile strength ranging from 473 to 608 MPa and plastic elongation ranging from 6.7 to 9.6% at an initial strain rate of 1 × 10−3 s−1. However, lower ductility was observed with decreasing strain rate at the intermediate temperature ranging from 150 to 250 °C for Al–Y–Ni–Fe alloys due to limited work hardening.  相似文献   

12.
Quenching test was used to characterize thermal shock properties of ZrB2–20%SiCp–10%AlN. It showed that critical temperature difference was 400 °C, and residual strength was a constant while quenching temperature was higher than 400 °C. Inertial stress was investigated under different temperatures, as shown, a higher temperature led to a lower inertial stress. Crack resistance under room temperature was compared with that under 600 °C, as can be seen, a higher temperature led to a higher crack resistance. Dynamic thermal stress intensity factor was investigated at the quenching temperature of 600 °C, and it indicated that stress intensity factor ascended first and descended afterwards, farther crack propagation would not occur when Biot value is in a certain range, such as Biot = 5. Crack would not propagate when Biot = 1, and specimen would be destroyed when Biot = 10.  相似文献   

13.
Abstract

Superplastic forming is particularly attractive for high temperature Ti alloys because of the much lower forming stresses compared with those encountered during forging. The superplastic deformation parameters of IMI 834 sheet were obtained at 900, 940, and 990°C. At 990°C, IMI 834 shows low flow stresses, high values of strain rate sensitivity, and minimum strain anisotropy, however, 300% superplastic elongation was readily obtained at the lower forming temperature of 940°C but with a higher flow stress. A reduction in the room temperature and 600°C tensile properties with superplastic strain resulted from strain enhanced grain growth during superplastic deformation; this effect was greatest at 990°C. Aging of post 990°C superplastically formed material was studied. The creep performance of IMI 834 was found to be slightly reduced by superplastic forming. These properties and the changes in the microstructure and texture are compared with other Ti alloys under superplastic conditions.

MST/1822  相似文献   

14.
The wear behavior of Ti–50.3 at% Ni alloy in martensitic and austenitic states was studied. The alloy was prepared in a Vacuum Induction Melting furnace, forged at 800 °C, annealed at 1000 °C for 12 h, quenched in water, then aged at 400 °C for 1 h and followed by water quenching. The phase transformation temperatures were measured by differential scanning calorimetry. The shape memory and pseudoelasticity properties of NiTi were obtained by three-point bending test. The highest deflection recovery due to the pseudoelasticity was observed at temperature of 50 °C. The wear tests were conducted using a pin-on-disk tribometer in a water media at temperatures ranging from 0 °C to 50 °C. The results showed that the wear rate of NiTi alloy was decreased as the wear testing temperature increased. This was mainly attributed to the pseudoelasticity effect and higher strength of the alloy in the austenitic state at temperature of 50 °C. The results also showed a lower coefficient of friction in the austenitic state compared to the martensitic state.  相似文献   

15.
The uniaxial compressive deformation behavior of a 10 vol.% SiC particulate reinforced AZ91 magnesium matrix composite (SiCp/AZ91) fabricated by stir casting is investigated at elevated temperature (250–400 °C). Peak stresses and flow stresses decrease as temperatures increase and strain rates decrease. The extent of dynamic recrystallization (DRX) becomes less as temperatures decrease at 250–350 °C or strain rates increase, and recrystallization occurs mainly within the intergranular regions rich of particles. Dynamic recrystallization accomplishes at 400 °C even at the strain rate of 1 s−1. An analysis of the effective stress dependence on strain rate and temperature gives a stress exponent of n = 5 and a true activation energy of Q = 99 kJ/kJ. The value of Q is close to the value for grain boundary diffusion in Mg. It is concluded that the deformation mechanism of SiCp/AZ91 composite during hot compression is controlled by the dislocation climb.  相似文献   

16.
Tensile tests on a FeNi-base austenitic alloy were conducted at room temperature (RT) and 400 °C, when serrated flow did not and did occur, respectively. Deformation microstructures such as topographies of slip bands (SBs), morphologies of twin boundaries (TBs) and arrangements of dislocations near TBs, as well as concentrations of strain were investigated. It is shown that TBs block SBs and induce remarkable stress accumulations at 400 °C. Effect of TB-density on the serrated flow was also investigated by comparative tensile tests on specimens with different TB densities at 400 °C. Details of tensile curves reveal that more TBs induce more pronounced serrations. Therefore, interaction between TBs and SBs is proposed to induce the serrated flow of the FeNi-base alloy at 400 °C.  相似文献   

17.
AZ91D is a widely used magnesium alloy, but its application is generally limited to below 150 °C because of its weak creep resistance and tensile properties at elevated temperatures. In this study, high temperature (200 °C) tensile properties including yield strength and tensile strength of AZ91D are much improved by adding only about 1.0 wt% AlN nanoparticles in the AZ91D matrix through an innovative ultrasonic cavitation based dispersion of nanoparticles. The good ductility of AZ91D is also retained in AZ91D/1%AlN nanocomposites. It is found that ultrasonic cavitation based solidification processing is very effective to disperse AlN nanoparticles in AZ91D melts, which is difficult to obtain by traditional mechanical stirring methods. With a good combination of high temperature yield strength, tensile strength and ductility, AZ91D/1%AlN nanocomposite is promising as a new class of structural materials to be used at temperatures up to 200 °C or higher.  相似文献   

18.
The polyethylene non-woven felt, Dyneema Fraglight, has excellent capabilities to stop bomb fragments. According to the manufacturer, a felt with an areal density of 1.2 kg/m2 stops a 17-grain projectile at 450 m/s. The research presented in this paper aims at improving our understanding of how non-woven felts work. Static tensile tests were performed at different strain rates and temperatures. The static tensile tests showed that there is an important size effect: the strength of the specimens decreases when increasing the size of the specimen, for lengths of 5 cm or less. This effect is expected since the felt is made by mixing, combing and needle punching of 5-cm-long fibers. The tests also showed that the felt is anisotropic and that at a temperature of 100 °C it loses a significant part of both its strength and strain to failure. Tensile tests at medium (1 s−1) and high strain rates (1000 s−1) did not show any evidence of strain rate dependence. Out-of-plane punching tests, designed to help with the modeling, were also performed and the results are presented.  相似文献   

19.
Polyethylene (PE), polypropylene (PP) and their blends have attracted a lot of attention due to their potential industrial applications. Therefore, the current work has been carried out with the main objective of investigating the impact of the thermal aging/treatment and blend ratio (composition range) on the mechanical (tensile and hardness) and thermal characteristics (using thermogravimetric analysis in a dynamic air atmosphere) of PE, PP and PE/PP binary blends. Samples of PE/PP blends containing 100/00, 75/25, 50/50, 25/75 and 0/100 wt.% were prepared via injection moulding technique and thermally treated/aged at 100 °C for 0, 2, 4, 7, 14 days. The tensile measurements indicated that the yield strength and the modulus decrease with increasing PE content. It was also observed that PE, PP and their blends deform in ductile modes. They undergo a uniform yielding over a wide range of deformation, which is followed by strain hardening and then failure. The strain to break for pure PE is found to be much higher than that for pure PP and for their blends, intermediate values have been observed. The hardness measurements have also revealed that increasing PE content in PE/PP blends reduced the hardness value of PP, however, thermal aging at 100 °C has not affected the polymers hardness which holds also true for the tensile properties, showing a good correlation between tested mechanical properties. The thermogravimetric analysis (TGA) in a dynamic air atmosphere and derivative thermogravimetric analysis (DTA) were conducted to study the thermal degradation and stability of thermally unaged and aged PE, PP and PE/PP blends in terms of the initial (Td and Td(1%)) and final (Td(99%)) decomposition temperatures and maximum decomposition rate temperature (Tmax). All polymers start to decompose at no less than 365 °C. As for mechanical properties, the blend ratio has affected the thermal properties however, aging time has not.  相似文献   

20.
Bending strength and the effective modulus of atmospheric ice accumulated in a closed loop wind tunnel at temperatures − 6 °C, − 10 °C and − 20 °C with a liquid water content of 2.5 g/m3 have been studied at different strain rates. More than 120 tests have been conducted. Ice samples, accumulated at each temperature, have been tested at the accumulation temperature. In addition, tests have been performed at temperatures of − 3 °C and − 20 °C, for the ice accumulated at − 10 °C. These tests showed a clear dependency of bending strength of atmospheric ice on test temperature at low strain rates. Strain rate effects are implied because the spread in bending strength for the different temperatures diminishes as strain rate increases. The results also reveal that, in most cases, the effective modulus of atmospheric ice increases with increasing strain rate. The bending strength of atmospheric ice accumulated at − 10 °C has been found to be greater than that of ice accumulated at − 6 °C and − 20 °C. The results show that the effective modulus of ice accumulated at − 20 °C at higher strain rates is less than that of the two other types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号