首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
CdTe thin films of different thicknesses were deposited by electrodeposition on stainless steel substrates (SS). The dependence of structural and optical properties on film thickness was evaluated for thicknesses in the range 0.17–1.5 μm. When the film is very thin the crystallites lack preferred orientation, however, thicker films showed preference for (111) plane. The results show that structural parameters such as crystallite size, lattice constant, dislocation density and strain show a noticeable dependence on film thickness, however, the variation is significant only when the film thickness is below 0.8 μm. The films were successfully transferred on to glass substrates for optical studies. Optical parameter such as absorption coefficient (α), band gap (Eg), refractive index (n), extinction coefficient (ke), real (?r) and imaginary (?i) parts of the dielectric constant were studied. The results indicate that all the optical parameters strongly depend on film thickness.  相似文献   

2.
Zinc sulfide (ZnS) thin films of different thickness were coated on glass substrates by the sol–gel dip-coating technique. Thickness dependent structural and optical properties of the films were studied in detail. X-ray diffraction (XRD) analysis indicated that the films had mixture of cubic (β) and hexagonal (α) phases with cubic (β) phase being predominant. Scanning electron microscope (SEM) showed that the film surfaces were smooth and crack free. Energy dispersive X-ray (EDX) measurement showed no impurity in the ZnS compound with elemental concentration of Zn/S being 50.38/49.62. Optical measurements showed that optical transmittance of the films were decreased in the visible range as the film thickness increased and band gap of the thin films were estimated to be about 3.61, 3.56, and 3.39?eV for the films with thickness of 100, 220, and 360?nm, respectively. Reactive indices and extinction coefficients of the films were measured by Spectroscopic Ellipsometer. Both the refractive index (n) and extinction coefficient (k) of the films were increased as the film thickness decreased. Electrical measurements showed that the resistivity of the films were decreased as the substrate temperature and film thickness increased.  相似文献   

3.
Herein, we report on tin monosulfide (SnS) thin films elaborated by the Chemical Spray Pyrolysis (CSP) technique onto various substrates as simple glass, ITO-, and Mo-coated glasses in order to study the influence of substrates on the physical and chemical properties of Sns thin films. Structural analysis revealed that all films crystallize in orthorhombic structure with (111) as the sole preferential direction without secondary phases. In addition, film prepared onto pure glass exhibits a better crystallization compared to films deposited onto coated glass substrates. Raman spectroscopy analysis confirms the results obtained by X-ray diffraction with modes corresponding well to SnS single-crystal orthorhombic ones (47, 65, 94, 160, 186, and 219 cm ?1) without any additional parasite secondary phase like Sn2S3 or SnS2. Field emission scanning electron microscope revealed that all films have a cornflake-like particles surface morphology, and energy dispersive X-ray spectroscopy analysis showed the presence of sulfur and tin with a nearly stoichiometric ratio in films deposited onto pure glass. High surface roughness and large grains are observable in film deposited onto glass. From optical spectroscopy, it is inferred that band gap energy of SnS/glass and SnS/ITO were 1.64 and 1.82 eV, respectively.  相似文献   

4.
AgGaS2 (AGS) thin films were deposited onto glass substrates by sequential thermal evaporation of AgGaS2 single crystalline powder and excess silver (Ag) interlayer. Systematic optimization to obtain single phase AgGaS2 thin films was carried out by changing the thickness of the excess silver layer. The structure and composition of as-grown and annealed films were studied by means of X-ray diffraction and energy dispersive X-ray analysis, respectively. The optical properties of AGS thin films determined by transmittance and reflection measurements showed that they had quite high absorption coefficient with the values around 104 (cm−1). The calculated band gap values were found to be between 2.30 and 2.75 eV depending on annealing temperature. The refractive index (n) and extinction coefficient (k) of the films were determined by the envelope method. Finally, photo-electrical measurements under different illumination intensities were carried out, and different sensitizing and recombination centers were defined.  相似文献   

5.
SnS: Cu thin films have been successfully prepared on Pyrex substrates using low cost chemical bath deposition (CBD) technique with different copper doped concentration (y = [Cu]/[Sn] = 5%, 6%, 8%, 9% and 10%). The structure, the surface morphology and the optical properties of the SnS:Cu films were studied by X-ray diffraction (XRD), atomic force microscopy (AFM) and spectrophotometer measurements, respectively. To obtain a thickness of the order of 780 ± 31 nm for absorber material in solar cell devices, a system of multilayer has been prepared. It is found that the physical properties of tin sulphide are affected by Cu-doped concentration. In fact, X-ray diffraction study showed that better cristallinity in zinc blend structure with preferential orientations (111)ZB and (200)ZB, was obtained for y equal to 6%. According to the AFM analysis we can remark that low average surface roughness (RMS)value of SnS(ZB) thin film obtained with Cu-doped concentrations equal to y = 6%, is about of 54 nm. Energy dispersive spectroscopy (EDS) showed the existence of Cu in the films. Optical analyses by means of transmission T(λ) and reflection R(λ) measurements show 1.51 eV as a band gap value of SnS:Cu(6%) which is nearly equal to the theoretical optimum value of 1.50 eV for efficient light absorption. On the other hand, Cu-doped tin sulphide exhibits a high absorption coefficient up to 2 × 106 cm−1, indicating that SnS:Cu can be used as an absorber thin layer in photovoltaic structure such as SnS:Cu/ZnS/SnO2:F and SnS:Cu/In2S3/SnO2:F, where ZnS and In2S3 are chemically deposited in a previous studies.  相似文献   

6.
R. Todorov  A. Paneva 《Thin solid films》2010,518(12):3280-3869
Optical properties of thin chalcogenide films from the systems As-S(Se) and As-S-Se were investigated as a function of the film composition, film thickness and conditions of illumination by light using multiple-angle-of-incidence ellipsometry. Thin films were deposited by thermal evaporation and exposed to white light (halogen lamp) and to monochromatic light from Ar+ — (λ = 488, 514 nm) and He-Ne- (λ = 632.8 nm) lasers. The ellipsometric measurements were carried out at three different angles of light incidence in the interval 45-55°, at λ = 632.8 nm. An isotropic absorbing layer model was applied for calculation of the optical constants (refractive index, n and extinction coefficient, k) and film thickness, d. The homogeneity of the films was checked and verified by applying single-angle calculations at different angles. It was shown that the refractive index, n of As-S-Se films is independent of film thickness in the range of 50 to 1000 nm and its values varied from 2.45 to 3.05 for thin layers with composition As2S3 and As2Se3, respectively. The effect of increasing in the refractive index was observed after exposure to light which is related to the process of photodarkening in arsenic containing layers. The viability of the method for determining the optical constants of very thin chalcogenide films with a high accuracy was confirmed.  相似文献   

7.
Polycrystalline cupric oxide (CuO) thin films are deposited using an alkaline solution bath employing cathodic electrodeposition method. Thin films are electroplated at various bath temperatures onto conducting indium tin oxide coated glass substrates. The bath temperature effects on the structural, optical and morphological properties of copper oxide films are studied and reported. X-ray diffraction studies revealed mixed phases of monoclinic and cubic for films grown at lower bath temperatures and that the deposited films at temperatures optimized as 75 °C exhibited cubic structure with preferential orientation along a (111) plane. Texture coefficient (Tc) values are calculated for all diffraction lines and the films were highly textured (Tc > 1). The surface morphology and surface roughness are estimated using scanning electron microscopy and atomic force microscopy, respectively and a morphology made up of pyramid shaped grains is presented. Energy dispersive analysis by X-rays revealed that the near stoichiometric CuO thin films are obtained at optimized preparative parameters. The refractive index is calculated using the envelop method. Also, the optical constants of CuO thin films such as complex dielectric constant (ε) and extinction coefficient (k) are also evaluated and reported.  相似文献   

8.
Aluminum doped ZnO (AZO) thin films doped with different aluminum concentrations have been prepared by spray pyrolysis method onto glass substrates. The optical and structural properties of the films have been investigated by X-ray diffraction and optical characterization methods. The X-ray diffraction spectra showed that all of the thin films are of polycrystalline nature. The thin films have (002) as the preferred orientation. The optical band gaps of the films were calculated. The E g values decrease with increasing Al doping concentration. The refractive index, the extinction coefficient, and the real and imaginary components of dielectric constant are calculated. The obtained results show that all optical parameters keep constant in the visible region, whereas in the ultraviolet region, doping concentration strongly affects the optical parameters of AZO thin films. Optical constants tend to decrease with increasing doping concentration.  相似文献   

9.
Near stoichiometric and stoichiometric CuIn(1?x)Al(x)Se2 (CIAS) thin films have been prepared by chemical bath deposition (CBD) technique. X-ray diffraction (XRD) and energy dispersive x-ray analysis (EDAX) spectra have been employed to confirm the structure and composition of the prepared films. SEM analysis of near-stoichiometric and stoichiometric CIAS thin films enabled us to estimate the grain size, to identify the growth mechanism and also to visualize the surface morphology. Transmittance spectra have been employed to determine the type of transition and other optical parameters such as absorption coefficient, extinction coefficient, dielectric constant, refractive index, Sellmeier parameters and bandgap which are reported in this paper in detail.  相似文献   

10.
Cupric oxide (CuO) thin films are deposited on glass substrates by double dip method at various molar concentrations of copper sulphate salt. Growth mechanism is derived using oxolation process. The structural studies revealed the deposited films exhibited polycrystalline nature with monoclinic structure. The change in the molar concentration of copper sulphate salt has pronounced effect on the microstructural properties of deposited thin films. XPS and EDS spectra confirm the presence of Cu and O. Micro Raman spectra shows two Ag and Bg active Raman mode peaks corresponding to CuO phase. Deposited films showed a high absorbance in the visible range with the bandgap value of 1.3 eV making it a suitable material as semiconductor tandem absorber for solar cells. Optical constants such as refractive index (n), extinction coefficient (k), optical conductivity (σ) and dielectric constants (ε) were evaluated using an approximation protocol developed from well recognized procedures using the data obtained from UV spectroscopic technique. The prepared CuO thin films are identified as suitable candidates for optoelectronic devices and solar cell fabrication.  相似文献   

11.
Bi2S3 thin films were grown by successive ionic layer adsorption and reaction method (SILAR) onto the glass substrates at room temperature. The as prepared thin film were annealed at 250 °C in air for 30 min. These films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrical measurement systems. The X-ray diffraction patterns reveal that Bi2S3 thin film have orthorhombic crystal structure. SEM images showed uniform deposition of the material over the entire glass substrate. The optical energy band gap observed to be decreased from 1.69 to 1.62 eV for as deposited and annealed films respectively. The IV measurement under dark and illumination condition (100 W) show annealed Bi2S3 thin film gives good photoresponse as compared to as deposited thin film and Bi2S3 thin film exhibits photoconductivity phenomena suggesting its useful in sensors device. The thermo-emf measurements of Bi2S3 thin films revealed n-type electrical conductivity.  相似文献   

12.
Thin films of (As50Se50)100?xAgx (with 0?≤?x?≤?25 s) metal-chalcogenide glasses were deposited onto glass substrates by thermal evaporation technique under high vacuum (10?6 mbar). The optical constants as well as the average thickness of the studied films are determined by the Swanepoel envelope method which is based on the optical transmission spectra measured in the spectral range 300–2500 nm. This method enables the transformation of the optical-transmission spectrum of a thin film of wedge-shaped thickness into the spectrum of a uniform film, whose thickness is equal to the average thickness of the non-uniform layer. The dispersion of the refractive index is discussed in terms of the Wemple–DiDomenico single-oscillator model. The optical absorption edge is described using the non-direct transition model proposed by Tauc relation. Analysis of the optical data revealed that an addition of Ag in the range from 0 to 25 at.% to the (As50Se50)100?x binary alloys affected the optical parameters of the investigated thin films. For instance, the optical band gap decreased from 1.661 to 1.441 eV with increasing the Ag content from 0 to 25 at.%. The results were discussed in terms of Mott and Davis model as well as chemical-bond approach.  相似文献   

13.
Tin sulfide thin films on soda-lime glass substrate were prepared by co-evaporation. This technique uses a vapor phase procedure involving chemical reactions between the precursor species evaporated simultaneously. The influence of the substrate temperature in the crystal structure and chemical composition were determined by X-ray diffraction and energy dispersive analysis of X-rays, showing that thin films crystallized in SnS, SnS2, and Sn2S3 phases. Scanning electron microscope shows thin films with homogenous and uniform surface. Some of the samples were annealed to study the variation of structural, chemical, and optical properties. The variation of refractive index (n), extinction coefficient (k), and dielectric constant (ε) with wavelength and photon energy are reported. The energy band gap was calculated from optical transmittance and reflectance measurements in the range 300–1500 nm. The calculated energy band gap values were between 1.75 and 2.3 eV, depending on the phase in which crystallized the different thin films.  相似文献   

14.
Silverphthalocyanine thin films are deposited on to glass substrates by thermal evaporation technique. Optical data have been obtained from both absorption and reflectivity spectra over the wavelength range 350–900 nm. The absorption coefficient α and extinction coefficient k are estimated from the spectrum. The mechanism of optical absorption follows the rule of direct transition. Using α and k, the refractive index and the dielectric constants are determined. Electrical conductivity studies are done at different substrate temperatures and using the Arrhenius plot the activation energy in the intrinsic region and impurity region is estimated. From the X-ray diffractograms of AgPc thin films subjected to heat treatments the variation of grain size is also studied. The scanning electron microscopy images are taken to study the surface morphology of the films. Silver phthalocyanine thin film is expected to find application in the fabrication of organic transistors and LED devices.  相似文献   

15.
Recent interests focus on tin mono sulphide as a potential candidate for an absorber layer in heterojunction solar cells. In the present investigation, SnS thin films have been deposited onto different substrates such as glass, ITO and Mo-coated glass substrate by thermal evaporation method. The compositional, microstructural and photoelectrochemical properties of the SnS films were analyzed depending upon the chemical nature of the substrates used. The SnS layers were polycrystalline with Herzbergite orthorhombic structure on all three substrates and had nearly stoichiometric elemental composition with a Sn/S ratio of ~1.01. The films grown on ITO and Mo-coated glass substrates exhibit (040) as preferred orientation whereas the films deposited on glass showed (111) plane as predominant. The layers were densely packed and well adherent to the substrate surface. The Raman spectra showed bands at 64, 163, 189 and 219 cm?1, which corresponds to the single phase (SnS) composition of films. p-type conductivity of all the deposited films were determined by the photoresponse studies. The highest photoresponse for the films on the ITO substrate indicates their appropriateness for the solar cell application.  相似文献   

16.
Chalcopyrite copper indium aluminum diselenide (CuIn0.81Al0.19Se2) compound is prepared by direct reaction of high purity elemental copper, indium, aluminum and selenium in their stoichiometric proportion. Structural and compositional characterizations of pulverized material confirm the formation of a single phase, polycrystalline nature. CuInAlSe2 (CIAS) thin films are deposited on organically cleaned soda lime glass substrates using flash evaporation technique by varying the substrate temperatures in the range from 423 K to 573 K. Influence of substrate temperature observed by X-ray diffraction (XRD), scanning electron microscope (SEM), optical and electrical measurement. CIAS Films grown at different substrate temperatures are polycrystalline in nature, exhibiting a chalcopyrite structure with lattice parameters a = ∼0.576 nm and c = ∼1.151 nm. The crystallinity in the films increases with increasing substrate temperature up to 473 K, and tend to degrade at higher substrate temperatures. Optical band gap is in the range of 1.20 eV–1.38 eV and the absorption coefficient is close to 105 cm−1. Electrical characterization reveals p-type conductivity and the structural, morphological and optical properties indicate potential use of CIAS thin films as an absorber layer for thin film solar cell applications.  相似文献   

17.
Three-layered ZnO films were deposited on Si substrates by radio-frequency magnetron sputtering using layer by layer growth method. The Raman scattering confocal analysis confirms that ZnO film quality is improving at increasing the number of ZnO layers at film deposition.Applied method of deposition was used to realize homoepitaxial growth of ZnO films on c-Al2O3, Si, SiNx/Si, glass and ITO/glass substrates. In order to improve the film quality we increased the number of deposition stages up to 5. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmittance measurements were used to testify the quality of grown five-layered ZnO films. XRD results showed that all five-layered ZnO films have (002) texture. The second order diffraction peak (004) on XRD spectra additionally testifies to the high quality of all five-layered ZnO films. SEM results demonstrated that no defects such as cracks and dislocations caused by interruption of deposition ZnO films were observed. Transmittance measurement results showed that ZnO films deposited on transparent substrates have abrupt absorption edge and high optical transmission in the visible region of the spectrum.  相似文献   

18.
Tin sulfide (SnS) thin films have been prepared by spray pyrolysis (SP) technique using tin chloride and N, N-dimethylthiourea as precursor compounds. Thin films prepared at different temperatures have been characterized using several techniques. X-ray diffraction studies have shown that substrate temperature (Ts) affects the crystalline structure of the deposited material as well as the optoelectronic properties. The calculated optical band gap (Eg) value for films deposited at Ts = 320-396 °C was 1.70 eV (SnS). Additional phases of SnS2 at 455 °C and SnO2 at 488 °C were formed. The measured electrical resistivity value for SnS films was ∼ 1 × 104 Ω-cm.  相似文献   

19.
W.T. Tang  Z.G. Hu  J. Sun  J.D. Wu 《Thin solid films》2010,518(19):5442-5446
A plasma assisted reactive pulsed laser deposition process was demonstrated for low-temperature deposition of thin hafnia (HfO2) and zirconia (ZrO2) films from metallic hafnium or zirconium with assistance of an oxygen plasma generated by electron cyclotron resonance microwave discharge. The structure and the interface of the deposited films on silicon were characterized by means of Fourier transform infrared spectroscopy, which reveals the monoclinic phases of HfO2 and ZrO2 in the films with no interfacial SiOx layer between the oxide film and the Si substrate. The optical properties of the deposited films were investigated by measuring the refractive indexes and extinction coefficients with the aid of spectroscopic ellipsometry technique. The films deposited on fused silica plates show excellent transparency from the ultraviolet to near infrared with sharp ultraviolet absorption edges corresponding to direct band gap.  相似文献   

20.
Photovoltaic structures using chemically deposited tin sulfide thin films   总被引:1,自引:0,他引:1  
Chemically deposited thin films of tin sulfide forms in two crystalline structures depending on the bath compositions used: orthorhombic, SnS(OR), and zinc-blende, SnS(ZB). These films posses p-type electrical conductivity and have band gaps of 1.2 and 1.7 eV, respectively. The photovoltaic structure: SnO2:F/CdS/SnS(ZB)/SnS(OR) with evaporated Ag-electrode reported here shows an open circuit voltage (VOC) of 370 mV, a short circuit current density (JSC) of 1.23 mA/cm2, fill factor of 0.44 and conversion efficiency of 0.2% under 1 kW/m2 illumination intensity. We present an evaluation for improvement in the light generated current density when the two types of SnS absorber films are used. Different evaporated electrode materials were tested, from which Ag-electrode was chosen for this work. The results given above were obtained with SnS(ZB) film of 0.1 µm and SnS(OR) film of 0.5 µm in thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号