首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了石墨烯/氮化硼二维异质结增强的硅基太赫兹波光调制器。利用太赫兹波时域谱系统和实验室自主搭建的太赫兹波动态测试系统分别测试了808 nm激光对太赫兹波的静态和动态调制。当照射在太赫兹波调制器上的激光功率从0增加至500 mW时,平均太赫兹波透过率从58%下降到13%,静态调制深度最高达到76%(500 mW)。动态测试获得的最大调制速度为15 kHz (100 mW)。实验结果表明,与单层石墨烯增强的硅基调制器相比,石墨烯/氮化硼异质结可以更大地提高硅对于太赫兹波的调制深度,并提升调制速度。  相似文献   

2.
This paper reviews recent advances in spectroscopic study on ultrafast carrier dynamics and terahertz (THz) stimulated emission in optically pumped graphene. The gapless and linear energy spectra of electrons and holes in graphene can lead to nontrivial features such as negative dynamic conductivity in the THz spectral range, which may lead to the development of new types of THz lasers. First, the non-equilibrium carrier relaxation/recombination dynamics is formulated to show how photoexcited carriers equilibrate their energy and temperature via carrier-carrier and carrier-phonon scatterings and in what photon energies and in what time duration the dynamic conductivity can take negative values as functions of temperature, pumping photon energy/intensity, and carrier relaxation rates. Second, we conduct time-domain spectroscopic studies using an optical pump and a terahertz probe with an optical probe technique at room temperature and show that graphene sheets amplify an incoming terahertz field. Two different types of samples are prepared for the measurement; one is an exfoliated monolayer graphene on SiO2/Si substrate and the other is a heteroepitaxially grown non-Bernal stacked multilayer graphene on a 3C-SiC/Si epi-wafer.  相似文献   

3.
The absorption/amplification spectrum of terahertz radiation in inhomogeneous graphene (n–i–p–i structure) with a periodic dual metal grating is theoretically investigated. It is shown that the amplification of terahertz radiation sharply increases at the plasmon-resonance frequency, when losses due to electron scattering and emission are balanced by the plasmon gain (related to the stimulated radiative interband recombination of electron–hole pairs in the inverted region of graphene).  相似文献   

4.
A terahertz (THz) imaging system and high efficient terahertz sources and detectors for medical applications were developed. A fiber laser based compact time domain terahertz tomography system was developed with a high depth resolution of less than 20 μm. Three-dimensional images of porcine skin were obtained including some physical properties such as applied skin creams. The discrimination between healthy human tissue and tumor tissue has been achieved using reflection spectra. To improve the THz imaging system, a ridge waveguide LiNbO3 based nonlinear terahertz generator was studied to achieve high output power. A ridge waveguide with 5-7 μm width was designed for high efficiency emission from the LiNbO3 crystal by the electro-optic Cherenkov effect. Terahertz electronic sources and detectors were also realized for future imaging systems. As electronic source devices, resonant tunneling diode (RTD) oscillators with a patch antenna were fabricated using an InGaAs/InAlAs/AlAs triple barrier structure. On the other side, Schottky barrier diode (SBD) detectors with a log-periodic antenna were fabricated by thin-film technology on a Si substrate. Both devices operate above 1 THz at room temperature. This electronic THz device set could provide a future high performance imaging system.  相似文献   

5.
Low-dimensional carbon nanostructures, such as single-wall carbon nanotubes (SWCNTs) and graphene, offer new opportunities for terahertz science and technology. Being zero-gap systems with a linear, photon-like energy dispersion, metallic SWCNTs and graphene exhibit a variety of extraordinary properties. Their DC and linear electrical properties have been extensively studied in the last decade, but their unusual finite-frequency, nonlinear, and/or non-equilibrium properties are largely unexplored, although they are predicted to be useful for new terahertz device applications. Terahertz dynamic conductivity measurements allow us to probe the dynamics of such photon-like electrons, or massless Dirac fermions. Here, we use terahertz time-domain spectroscopy and Fourier transform infrared spectroscopy to investigate terahertz conductivities of one-dimensional and two-dimensional electrons, respectively, in films of highly aligned SWCNTs and gated large-area graphene. In SWCNTs, we observe extremely anisotropic terahertz conductivities, promising for terahertz polarizer applications. In graphene, we demonstrate that terahertz and infrared properties sensitively change with the Fermi energy, which can be controlled by electrical gating and thermal annealing.  相似文献   

6.
通过将三维石墨烯材料与聚二甲基硅氧烷薄膜相结合,设计并研制了一种宽带可拉伸的太赫兹波吸收材料,设计结构可以使三维石墨烯在聚二甲基硅氧烷层的保护下实现大幅度拉伸。实验结果表明,该吸波材料在0.2~1.1 THz的测试范围内有最高90%的吸收率,同时在20%的拉伸量下复合结构对太赫兹波吸收率基本保持不变,并且在去掉外力时材料样品的结构和性能均可恢复至原始状态。可拉伸太赫兹吸波材料具有带宽大、吸收率高、加工简单以及可大面积制备等优点,在太赫兹吸收器等领域中具有潜在的应用价值。  相似文献   

7.
Many time-domain terahertz applications require systems with high bandwidth, high signal-to-noise ratio and fast measurement speed. In this paper we present a terahertz time-domain spectrometer based on 1550 nm fiber laser technology and InGaAs photoconductive switches. The delay stage offers both a high scanning speed of up to 60 traces / s and a flexible adjustment of the measurement range from 15 ps – 200 ps. Owing to a precise reconstruction of the time axis, the system achieves a high dynamic range: a single pulse trace of 50 ps is acquired in only 44 ms, and transformed into a spectrum with a peak dynamic range of 60 dB. With 1000 averages, the dynamic range increases to 90 dB and the measurement time still remains well below one minute. We demonstrate the suitability of the system for spectroscopic measurements and terahertz imaging.  相似文献   

8.
The terahertz absorption spectrum in a periodic array of graphene nanoribbons located on the surface of a dielectric substrate with a high refractive index (terahertz prism) is studied theoretically. The total absorption of terahertz radiation is shown to occur in the regime of total internal reflection of the terahertz wave from the periodic array of graphene nanoribbons, at the frequencies of plasma oscillations in graphene, in a wide range of incidence angles of the external terahertz wave even at room temperature.  相似文献   

9.
Based on terahertz time-domain spectroscopy system and two-dimensional scanning control system, terahertz transmission and reflection intensity mapping images on a graphene film are obtained, respectively. Then, graphene conductivity mapping images in the frequency range 0.5 to 2.5 THz are acquired according to the calculation formula. The conductivity of graphene at some typical regions is fitted by Drude-Smith formula to quantitatively compare the transmission and reflection measurements. The results show that terahertz reflection spectroscopy has a higher signal-to-noise ratio with less interference of impurities on the back of substrates. The effect of a red laser excitation on the graphene conductivity by terahertz time-domain transmission spectroscopy is also studied. The results show that the graphene conductivity in the excitation region is enhanced while that in the adjacent area is weakened which indicates carriers transport in graphene under laser excitation. This paper can make great contribution to the study on graphene electrical and optical properties in the terahertz regime and help design graphene terahertz devices.  相似文献   

10.
We have studied coherent terahertz (THz) emission from graphene-coated surfaces of three different semiconductors—InP, GaAs, and InAs—to provide insight into the influence of O2 adsorption on charge states and dynamics at the graphene/semiconductor interface. The amplitude of emitted THz radiation from graphene-coated InP was found to change significantly upon desorption of O2 molecules by thermal annealing, while THz emission from bare InP was nearly uninfluenced by O2 desorption. In contrast, the amount of change in the amplitude of emitted THz radiation due to O2 desorption was essentially the same for graphene-coated GaAs and bare GaAs. However, in InAs, neither graphene coating nor O2 adsorption/desorption affected the properties of its THz emission. These results can be explained in terms of the effects of adsorbed O2 molecules on the different THz generation mechanisms in these semiconductors. Furthermore, these observations suggest that THz emission from graphene-coated semiconductors can be used for probing surface chemical reactions (e.g., oxidation) as well as for developing O2 gas sensor devices.  相似文献   

11.
史叶欣  李九生 《红外与激光工程》2018,47(5):520003-0520003(6)
提出并设计了一种基于双层石墨烯结构的电控太赫兹波开关。该开关结构由棱镜-石墨烯-二氧化硅-石墨烯-锑化铟组成。太赫兹波从棱镜左侧以特定角度入射,棱镜右侧固定有太赫兹波探测器,通过外加电场改变石墨烯介电常数,影响等离子体波矢匹配,进而控制太赫兹波反射率,实现太赫兹开关目的。实验运用COMSOL软件对双层石墨烯电控开关进行仿真模拟,将1 THz的太赫兹波以35.42从棱镜左上方入射,在无外加电场时,太赫兹波反射率为2.63%,此时为太赫兹波开关的关状态。施加外加电场时,石墨烯的介电常数发生变化,太赫兹波反射率改变并达到93.01%,棱镜结构接近全反射,此时为太赫兹波开关的开状态。研究结果表明该结构具有良好的太赫兹波强度控制性能,电控太赫兹波开关消光比为15.5 dB。  相似文献   

12.
Indium nitride is a novel narrow band gap semiconductor. The material is a potential strong source of terahertz frequency electromagnetic radiation with applications in time-domain terahertz spectroscopy and imaging systems. This article reviews recent experimental research on terahertz emission from the binary compound semiconductor indium nitride excited by near-infrared laser beams or microseconds electrical pulses. Advantages of indium nitride as terahertz radiation source material are discussed. It is demonstrated that different mechanisms contribute to the emission of terahertz radiation from indium nitride. The emission of up to 2.4 μW of THz radiation power is observed when InN is excited with near-infrared femtosecond laser pulses at an average power of 1 W.  相似文献   

13.
We design an electrically controllable terahertz wave attenuator by using graphene. We show that terahertz wave can be confined and propagate on S-shaped graphene waveguide with little radiation losses, and the confined terahertz wave is further manipulated and controlled via external applied voltage bias. The simulated results show that, when chemical potential changes from 0.03 into 0.05 eV, the extinction ratio of the terahertz wave attenuator can be tuned from 1.28 to 39.42 dB. Besides the simplicity, this novel terahertz wave attenuator has advantages of small size (24?×?30 μm2), a low insertion loss, and good controllability. It has a potential application for forthcoming planar terahertz wave integrated circuit fields.  相似文献   

14.
We report on the terahertz emission from femtosecond-laser-irradiated GaAs layers grown on Si(100) and Si(111) substrates. The results show that the terahertz emission from GaAs on Si is stronger than that of a semi-insulating bulk GaAs crystal. This increase is attributed to the strain field at the GaAs/Si interface. In the GaAs of the Si(100) sample, the stronger terahertz emission is observed compared with GaAs on Si(111). Moreover, the effect of changing the doping type of the Si substrate from n-type to semi-insulating was also studied and it was found that the terahertz emission intensity of GaAs on semi-insulating Si(100) is stronger than that of GaAs on n-type Si(100). Finally, strong terahertz emission from GaAs on semi-insulating Si(100) was observed not only in the reflection geometry but also in the transmission geometry. These results hold promise for new applications of terahertz optoelectronics.  相似文献   

15.
A 2D problem of the diffraction of plane electromagnetic wave by a graphene ribbon on a finitesize dielectric substrate is considered for the TM polarization. Rigorous numerical methods are used to calculate the scattering cross sections in the terahertz frequency range. It is shown that multipole resonances vanish in the scattering spectrum in the presence of a small substrate that represents a thin dielectric film.  相似文献   

16.
A Review of the Terahertz Conductivity of Bulk and Nano-Materials   总被引:1,自引:0,他引:1  
We review pioneering and recent studies of the conductivity of solid state systems at terahertz frequencies. A variety of theoretical formalisms that describe the terahertz conductivity of bulk, mesoscopic and nanoscale materials are outlined, and their validity and limitations are given. Experimental highlights are discussed from studies of inorganic semiconductors, organic materials (such as graphene, carbon nanotubes and polymers), metallic films and strongly correlated electron systems including superconductors.  相似文献   

17.
光电导天线作为太赫兹时域光谱仪产生与探测太赫兹辐射的关键部件,具有重要的科研与工业价值。本文采用分子束外延(MBE)方法制备InGaAs/InAlAs超晶格作为1 550 nm光电导天线的光吸收材料,使用原子力显微镜、光致发光、高分辨X射线衍射等方式验证了材料的高生长质量;通过优化制备条件得到了侧面平整的台面结构光电导天线。制备的光电导太赫兹发射天线在太赫兹时域光谱系统中实现了4.5 THz的频谱宽度,动态范围为45 dB。  相似文献   

18.
The Dirac semimetal cadmium arsenide (Cd3As2), a 3D electronic analog of graphene, has sparked renewed research interests for its novel topological phases and excellent optoelectronic properties. The gapless nature of its 3D electronic band facilitates strong optical nonlinearity and supports Dirac plasmons that are of particular interest to realize high-performance electronic and photonic devices at terahertz (1 THz = 4.1 meV) frequencies, where the performance of most dynamic materials are limited by the tradeoff between power-efficiency and switching speed. Here, all-optical, low-power, ultrafast broadband modulation of terahertz waves using an ultrathin film (100 nm, λ/3000) of Cd3As2 are experimentally demonstrated through active tailoring of the photoconductivity. The measurements reveal the photosensitive metallic behavior of Cd3As2 with high terahertz electron mobility of 7200 cm2 (Vs)−1. In addition, optical fluence dependent ultrafast charge carrier relaxation (15.5 ps), terahertz mobility, and long momentum scattering time (157 fs) comparable to superconductors that invoke kinetic inductance at terahertz frequencies are demonstrated. These remarkable properties of 3D Dirac topological semimetal envision a new class of power-efficient, high speed, compact, tunable electronic, and photonic devices.  相似文献   

19.
A method for the fabrication of 2D periodic structures by contact optical photolithography with image inversion is reported. The optical properties of photonic crystals and Bragg gratings for mid-IR and terahertz emitters are considered. The possibility of raising the integral emission intensity of light-emitting diodes for the mid-IR spectral range is demonstrated. The requirements to gratings for the output of terahertz emission generated by surface plasmons excited in layers of narrow-gap degenerate semiconductors with an accumulation layer are determined.  相似文献   

20.
太赫兹3D打印透镜综述   总被引:1,自引:0,他引:1       下载免费PDF全文
太赫兹波由于其独特的电磁特性可应用于超高速率无线通信、生物化学物质检测以及高分辨率成像等领域。但由于太赫兹波的物理波长小,传统适用于低频的加工工艺难以满足其加工精度的要求;而微纳米加工工艺又具有加工复杂、成本高等缺点。3D打印技术的发展为太赫兹器件的加工提供了新的选择和更多的设计灵活度。文章介绍了香港城市大学太赫兹与毫米波国家重点实验室在3D打印太赫兹透镜方面的最新研究动态和实验研究新成果,包括基于3D打印的太赫兹高增益圆极化透镜、近场聚焦圆极化透镜、贝塞尔波束生成透镜的设计,高精度3D打印方法的探索以及太赫兹天线测试方法等。太赫兹3D打印透镜天线具有低成本、低损耗、能快速成型等特点,可应用于不同的太赫兹场景中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号