首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Due to the simultaneously superior optical transmittance and low electrical resistivity, transparent conductive electrodes play a significant role in semiconductor electronics. To enhance the electrical properties of these films, one approach is thickness increment which degrades the optical properties. However, a preferred way to optimize both electrical and optical properties of these layers is to introduce a buffer layer. In this work, the effects of buffer layer and film thickness on the structural, electrical, optical and morphological properties of AZO thin films are investigated. Al-doped zinc oxide (AZO) is prepared at various thicknesses of 100 to 300 nm on the bare and 100 nm-thick indium tin oxide (ITO) coated glass substrates by radio frequency sputtering. Results demonstrate that by introducing ITO as a buffer layer, the average values of sheet resistance and strain within the film are decreased (about 76 and 3.3 times lower than films deposited on bare glasses), respectively. Furthermore, the average transmittance of ITO/AZO bilayer is improved nearly 10% regarding single AZO thin film. This indicates that bilayer thin films show better physical properties rather than conventional monolayer thin films. As the AZO film thickness increases, the interplanar spacing, d(002), strain within the film and compressive stress of the film in the hexagonal lattice, decreases indicating the higher yield of AZO crystal. Moreover, with the growth in film thickness, carrier concentration and optical band gap (Eg) of AZO film are increased from 4.62?×?1019 to 8.21?×?1019 cm?3 and from 3.55 to 3.62 eV, respectively due to the Burstein-Moss (BM) effect. The refractive index of AZO thin film is obtained in the range of 2.24–2.26. With the presence of ITO buffer layer, the AZO thin film exhibits a resistivity as low as 6?×?10?4 Ω cm, a sheet resistance of 15 Ω/sq and a high figure of merit (FOM) of 1.19?×?104 (Ω cm)?1 at a film thickness of 300 nm. As a result, the quality of AZO thin films deposited on ITO buffer layer is found to be superior regarding those grown on a bare glass substrate. This study has been performed over these two substrates because of their significant usage in the organic light emitting diodes and photovoltaic applications as an enhanced carrier injecting electrodes.  相似文献   

2.
Thin films of (As50Se50)100?xAgx (with 0?≤?x?≤?25 s) metal-chalcogenide glasses were deposited onto glass substrates by thermal evaporation technique under high vacuum (10?6 mbar). The optical constants as well as the average thickness of the studied films are determined by the Swanepoel envelope method which is based on the optical transmission spectra measured in the spectral range 300–2500 nm. This method enables the transformation of the optical-transmission spectrum of a thin film of wedge-shaped thickness into the spectrum of a uniform film, whose thickness is equal to the average thickness of the non-uniform layer. The dispersion of the refractive index is discussed in terms of the Wemple–DiDomenico single-oscillator model. The optical absorption edge is described using the non-direct transition model proposed by Tauc relation. Analysis of the optical data revealed that an addition of Ag in the range from 0 to 25 at.% to the (As50Se50)100?x binary alloys affected the optical parameters of the investigated thin films. For instance, the optical band gap decreased from 1.661 to 1.441 eV with increasing the Ag content from 0 to 25 at.%. The results were discussed in terms of Mott and Davis model as well as chemical-bond approach.  相似文献   

3.
Transparent conducting aluminum (i.e. 2 at.%) doped zinc oxide (AZO) thin films were prepared on glass substrates by sol–gel dip coating technique using different solvents. This inexpensive dip coating method involves dipping of substrate consecutively in zinc solution and tube furnace for required cycles. Prepared films were investigated by XRD, SEM, PL, Raman spectroscopy optical and electrical studies. From the XRD studies, it confirmed the incorporation of aluminum in ZnO lattice. The prepared samples are polycrystalline nature, and these films reveal hexagonal wurtzite arrangement with (002) direction. The structural parameters such as crystallite size, dislocation density, micro strain, texture coefficient and lattice constant were investigated. SEM study showed well defined smooth and uniformed ganglia shaped grains are regularly distributed on to the entire glass substrate without any pinholes and cracks, and the average grain size is 75 nm. From the optical studies, the observed highest transmittance is 93% in the visible range and the band gap (Eg) is 3.26 eV. Room temperature PL spectra exhibited strong UV emission peak located at 386 nm for all the films. The electrical properties of the AZO thin films were studied by Hall-Effect measurements and found as n-type conductivity with high carrier concentrations (n), 2.76?×?1019 cm??3 and low resistivity (ρ), 7.56?×?10??3 Ω cm for the film deposed using methanol as solvent.  相似文献   

4.
CuInGeSe4 thin films of various thicknesses were prepared on a glass substrate by thermal evaporation followed by selenization at 700 K. Energy dispersive X-ray analysis shows that the CuInGeSe4 thin films are near stoichiometric. The X-ray diffraction patterns indicate that the as-deposited CuInGeSe4 thin films are amorphous, while the CuInGeSe4 thin films annealed at 700 K are polycrystalline with the chalcopyrite phase. The structure of the films was further investigated by transmission electron microscopy and diffraction, with the results verifying the X-ray diffraction data. High-resolution scanning electron microscopy images show well-defined grains that are nearly similar in size. The surface roughness increases with film thickness, as confirmed by atomic force microscopy. The optical transmission and reflection spectra of the CuInGeSe4 thin films were recorded over the wavelength range of 400–2500 nm. The variation of the optical parameters of the CuInGeSe4 thin films, such as the refractive index n and the optical band gap Eg, as a function of the film thickness was determined. The value of Eg decreases with increasing film thickness. For the studied films, n were estimated from the Swanoepl’s method and were found to increase with increasing film thickness as well as follow the two-term Cauchy dispersion relation. A heterojunction with the configuration Al/n–Si/p–CuInGeSe4/Au was fabricated. The built-in voltage and the carrier concentration of the heterojunction was determined from the capacitance–voltage measurements at 1 MHz and were found to be 0.61 V and 3.72?×?1017 cm?3, respectively. Under 1000 W/m2 solar simulator illumination, the heterojunction achieved a conversion efficiency of 2.83%.  相似文献   

5.
Heavily doped metal oxide semiconductors are being developed as thin film transparent electrodes for many applications and their deposition at low substrate temperature can extend the use on heat sensitive devices. The structural and electro-optical characteristics of such metal oxide coatings are tightly related and depend on the specific deposition parameters apart from the material composition. In this work, SnO2:Sb (ATO) and ZnO:Al (AZO) thin films have been prepared by sputtering at room temperature on glass substrates, changing the deposition time to obtain various layer thicknesses from 0.2 to 0.9 μm; and they have been analyzed by X-ray diffraction, spectrophotometry, and Hall-effect measurements. ATO samples crystallize in the tetragonal structure with mean crystallite size increasing from 8 to 20 nm when the film thickness grows. The comparison of Hall mobility and optical mobility values indicates a significant contribution of grain boundary scattering for these ATO layers. Otherwise, AZO films show larger crystallites (21–27 nm) and a strong preferential orientation for analogous thickness increment, resulting in a lower contribution of the grain boundary scattering to the overall Hall mobility. The in-grain mobility for each sample is also related to the respective crystallite size and carrier concentration values.  相似文献   

6.
Pure, Barium and Nickel doped cadmium sulphide (CdS) thin films have been coated on glass substrates at 400?°C by spray pyrolysis technique. The prepared CdS and doped CdS thin films were analysed by various measurements such as X-ray diffraction (XRD), SEM, optical and Vibrating Sample Magnetometer (VSM). X-ray diffraction measurements show that the coated pure, Ba and Ni-doped CdS thin films belong to the cubic crystal structure with orientation preferentially along (111) direction. The average crystallite size of pure, Ba and Ni doped CdS thin films were determined as 31, 33 and 45 nm, respectively. The average dislocation density (δ) and stacking fault (SF) of pure, Ba and Ni doped CdS thin films were also determined. The surface morphology and elemental analysis of the thin films were determined by scanning electron microscopy and energy dispersive X-ray spectrum (SEM with EDAX). It is observed that the optical energy bandgap has been decreased from 2.43 to 2.1 eV due to the doping Ba. The luminescence spectrum shows a strong emission peak at 517 nm in the case of pure CdS thin film and a meager red shift has been observed due to the doping. VSM studies were employed to study the magnetic behaviour of Ba and Ni doped CdS thin films.  相似文献   

7.
In this study, (Cd1?xBix)S thin films were successfully deposited on suitably cleaned glass substrate at 60 °C temperature, using the chemical bath deposition technique. After deposition, the films were also annealed at 400 °C for 2 min in air. The structural properties of the deposited films were characterized using X-ray diffraction and AFM. Formation of cubic structure with preferential orientation along the (111) plane was confirmed together with BiS second phase from structural analysis. The interplanar spacing, lattice constant, and crystallite size of (Cd1?xBix)S thin films were calculated by the XRD. The crystallite size of the un-doped CdS thin films was found to be 7.84 nm, which increased to 11.1 nm with increasing Bi content from 0 to 10 %. The surface roughness of the films was measured by AFM studies. The photoluminescence spectra were observed at red shifted band edge peak with increasing doping concentration of Bi from 0 to 5 % in the un-doped CdS thin films. The optical properties of the films are estimated using optical absorption and transmission spectra in the range of 400–800 nm using UV–VIS spectrophotometer. The optical band gap energy of the films was found to be decreased from 2.44 to 2.23 eV with the Bi content being from 0 to 5 %. After annealing, the band gap of these films further decreased.  相似文献   

8.
The thin films of Nano crystalline tin disulfide (SnS2) have been prepared by nebulized spray pyrolysis technique (NSP) with different molar concentrations (0.3, 0.4 and 0.5 M). Cleaned glass substrates were used and the substrate temperature was maintained at 300?°C. The films were deposited using tin tetrachloride monohydrate (SnCl4·H2O) and thiourea in de-ionized water and Isopropyl alcohol (1:3 ratio). The prepared films structural, morphological and optical properties were studied using X-ray diffraction (XRD), scanning electron microscope (SEM), UV–Vis spectrophotometer. The structure of the films were found to be face centered cubic with preferential orientation along (002) plane. X-ray line profile analysis was used to evaluate the micro structural parameters such as crystallite size, micro strain, dislocation density and texture coefficient. The average crystallite size values are 60 nm. Morphological results of the SnS2 thin films are small needle shaped particles and the average grain size was 400 nm. The optical studies revealed that the band gap between 2.65 and 2.72 eV and high optical transmittance 98%. EDAX spectrum of tin disulfide result showed some amount of excess tin was present in the sample. This is the method with very low cost of producing tin disulfide (SnS2) thin films, which is very important for many applications in industry.  相似文献   

9.
Indium sulfide (In2S3) is a good window or buffer layer for photovoltaic application. In this work, β-In2?xAlxS3 thin films with different thicknesses (400, 442, 646 and 714 nm) are successfully synthesized on heated glass substrates using a chemical spray pyrolysis technique. The thin film thickness effect on the structural, optical and photoluminescence (PL) properties of β-In2?xAlxS3 material is studied. The X-ray diffraction patterns suggest the formation of β-In2S3 cubic phase preferentially oriented towards (400) direction. The level of the residual dislocation seems to be reduced to 3.12 × 109 lines mm?2 for the optimum thickness (646 nm) for which the β-In2?xAlxS3 film crystallinity is the best one. In order to enhance the electrical properties, β-In2?xAlxS3 layers are annealed in air at 400 °C for different annealing times (15, 30 and 45 min). The minimum resistivity, maximum Hall mobility and carrier concentration are found for β-In2?xAlxS3 films annealed for 30 min. All samples have high transmittance of about 75 % but the wide band gap (Eg = 3.32 eV) is obtained for this optimum thickness. This result indicates good optical quality of β-In2?xAlxS3 layers. Defects-related PL properties are also discussed.  相似文献   

10.
Undoped and Co-doped ZnO thin films with different amounts of Co have been deposited onto glass substrates by sol–gel spin coating method. Zinc acetate dihydrate, cobalt acetate tetrahydrate, isopropanol and monoethanolamine (MEA) were used as a precursor, doping source, solvent and stabilizer, respectively. The molar ratio of MEA to metal ions was maintained at 1.0 and a concentration of metal ions is 0.6 mol L?1. The Co dopant level was defined by the Co/(Co + Zn) ratio it varied from 0 to 7 % mol. The structure, morphology and optical properties of the thin films thus obtained were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectrometer (EDX), scanning electron microscopy (SEM), ultraviolet–visible (UV–Vis), photoluminescence (PL) and Raman. The XRD results showed that all films crystallized under hexagonal wurtzite structure and presented a preferential orientation along the c-axis with the maximum crystallite size was found is 23.5 nm for undoped film. The results of SEM indicate that the undoped ZnO thin film has smooth and uniform surface with small ZnO grains, and the doped ZnO films shows irregular fiber-like stripes and wrinkle network structure. The average transmittance of all films is about 72–97 % in the visible range and the band gap energy decreased from 3.28 to 3.02 eV with increase of Co concentration. DRX, EDX and optical transmission confirm the substitution of Co2+ for Zn2+ at the tetrahedral sites of ZnO. In addition to the vibrational modes from ZnO, the Raman spectra show prominent mode representative of ZnyCo3?yO4 secondary phase at larger values of Co concentration. PL of the films showed a UV and defect related visible emissions like violet, blue and green, and indicated that cobalt doping resulted in red shifting of UV emission and the reduction in the UV and visible emissions intensity.  相似文献   

11.
Cerium oxide (CeO2) thin films have been prepared by electron beam evaporation technique onto glass substrate at a pressure of about 6 × 10−6 Torr. The thickness of CeO2 films ranges from 140–180 nm. The optical properties of cerium oxide films are studied in the wavelength range of 200–850 nm. The film is highly transparent in the visible region. It is also observed that the film has low reflectance in the ultra-violet region. The optical band gap of the film is determined and is found to decrease with the increase of film thickness. The values of absorption coefficient, extinction coefficient, refractive index, dielectric constant, phase angle and loss angle have been calculated from the optical measurements. The X-ray diffraction of the film showed that the film is crystalline in nature. The crystallite size of CeO2 films have been evaluated and found to be small. The experimental d-values of the film agreed closely with the standard values.  相似文献   

12.
We illustrate that Tin sulfide (SnS) thin films of 110–500 nm in thickness may be deposited on ZnS and CdS substrates to simulate the requirement in developing window-buffer/SnS solar cells in the superstrate configuration. In the chemical bath deposition reported here, tin chloride and thiosulfate are the major constituents and the deposition is made at 25 °C. In a single deposition, film thickness of 110–170 nm is achieved and in two more successive depositions, the film thickness is 450–500 nm. The thicker films are composed of vertically stacked flakes, 100 nm across and 10–20 nm in thickness. The Sn/S elemental ratio is ~1 for the films 110–170 nm in thickness, but it slightly increases for thicker films. The crystalline structure is orthorhombic, similar to the mineral herzenbergite, and with crystallite diameters 13 nm (110–170 films) and 16 nm (450–500 nm films). The Raman bands at 94, 172 and 218 cm?1 further confirm the SnS composition of the films. The optical band gap of SnS is 1.4–1.5 eV for the thinner films, but is 1.28–1.39 eV for the thicker films, the decrease being ascribed to the increase in the crystallite diameter. Uniform pin-hole free SnS thin films were successfully grown on two different substrates and can be applied in solar cell structures.  相似文献   

13.
CdTe thin films of different thicknesses were deposited by electrodeposition on stainless steel substrates (SS). The dependence of structural and optical properties on film thickness was evaluated for thicknesses in the range 0.17–1.5 μm. When the film is very thin the crystallites lack preferred orientation, however, thicker films showed preference for (111) plane. The results show that structural parameters such as crystallite size, lattice constant, dislocation density and strain show a noticeable dependence on film thickness, however, the variation is significant only when the film thickness is below 0.8 μm. The films were successfully transferred on to glass substrates for optical studies. Optical parameter such as absorption coefficient (α), band gap (Eg), refractive index (n), extinction coefficient (ke), real (?r) and imaginary (?i) parts of the dielectric constant were studied. The results indicate that all the optical parameters strongly depend on film thickness.  相似文献   

14.
We report the morphologies and the bulk film effect on regioregular poly(3-dodecylthiophene) [RR-P3DDT] thin films fabricated with different concentrations (0.1, 0.2, 0.4 wt%) by drop-casting method using chloroform as a solvent and fused quartz glass as substrate. The measured thicknesses of the films were 220, 340 and 600 nm. The thin films were characterized by UV–Vis spectra and X-ray diffraction. The surface morphology of the thin film (600 nm) was analyzed using atomic force microscopy. The third order nonlinear susceptibility characteristics of the films were measured using Maker fringes method. These films exhibit efficient THG bulk effect with a maximum χ3 value of 1.41 × 10?10 esu obtained for 0.4 wt% concentration of RR-P3DDT revealing that this material is potentially suited for fabricating optical limiters.  相似文献   

15.
Indium-doped cadmium oxide (CdO:In) films were prepared on glass and sapphire substrates by pulsed filtered cathodic arc deposition (PFCAD). The effects of substrate temperature, oxygen pressure, and an MgO template layer on film properties were systematically studied. The MgO template layers significantly influence the microstructure and the electrical properties of CdO:In films, but show different effects on glass and sapphire substrates. Under optimized conditions on glass substrates, CdO:In films with thickness of about 125 nm showed low resistivity of 5.9 × 10?5 Ωcm, mobility of 112 cm2/Vs, and transmittance over 80 % (including the glass substrate) from 500 to 1500 nm. The optical bandgap of the films was found to be in the range of 2.7 to 3.2 eV using both the Tauc relation and the derivative of transmittance. The observed widening of the optical bandgap with increasing carrier concentration can be described well only by considering bandgap renormalization effects along with the Burstein–Moss shift for a nonparabolic conduction band.  相似文献   

16.
Nanocrystalline copper oxide (CuO) thin films have been synthesized by a sol–gel method using cupric acetate Cu (CH3COO) as a precursor. The as prepared powder was sintered at various temperatures in the range of (300–700?°C) and has been deposited onto a glass substrates using spin coating technique. The structural, compositional, morphological, electrical optical and gas sensing properties of CuO thin films have been studied by X-ray diffraction, Scanning Electron Microscopy (SEM), Four Probe Resistivity measurement and UV–visible spectrophotometer. The variation in annealing temperature affected the film morphology and optoelectronic properties. X-ray diffraction patterns of CuO films show that all the films are nanocrystallized in the monoclinic structure and present a random orientation. The crystallite size increases with increasing annealing temperature (40–45?nm).The room temperature dc electrical conductivity was increased from 10?6 to 10?5 (Ω?cm)?1, after annealing due to the removal of H2O vapor which may resist conduction between CuO grain. The thermopower measurement shows that CuO films were found of n-type, apparently suggesting the existence of oxygen vacancies in the structure. The electron carrier concentration (n) and mobility (μ) of CuO films annealed at 400–700?°C were estimated to be of the order of 4.6–7.2?×?1019?cm?3 and 3.7–5.4?×?10?5?cm2?V?1?s?1?respectively. It is observed that CuO thin film annealing at 700?°C after deposition provide a smooth and flat texture suited for optoelectronic applications. The optical band gap energy decreases (1.64–1.46?eV) with increasing annealing temperature. It was observed that the crystallite size increases with increasing annealing temperature. These modifications influence the morphology, electrical and optical properties.  相似文献   

17.
Ultra-thin ITO films with thickness of 4–56 nm were deposited on glass by dc magnetron sputtering using 5 wt% SnO2 doped ITO target. The effect of film thickness on the structural, electrical, optical properties and reliability was investigated for its application to touch panels. The 4 nm thick ITO film shows amorphous structure and other films present polycrystalline structure and the (222) preferred orientation. The ultra-thin ITO films show smooth surface with low Ra surface roughness smaller than 1 nm. The sheet resistance and visible transmittance of the ITO films decrease with the increase in film thickness. The 4 nm thick ITO film shows the highest resistivity (3.08 × 10?3 Ω cm) with low carrier density and Hall mobility, and other films have excellent conductivity (<4.0 × 10?4 Ω cm). The ITO films show high transmittance (>85 %) in visible light range and do not generate interference ripples between film and substrate interface. The ITO films with thickness of 18–56 nm show stable reliability under high temperature, high temperature & high humidity and alkaline environmental conditions. The only electrical degradation corresponds to the increase of sheet resistance in the ITO films with thickness of 4–12 nm.  相似文献   

18.
To find the percolation threshold for the electrical resistivity of metallic Ag-nanoparticle/titania composite thin films, Ag-NP/titania composite thin films, with different volumetric fractions of silver (0.26 ≤ φAg ≤ 0.68) to titania, were fabricated on a quartz glass substrate at 600 °C using the molecular precursor method. Respective precursor solutions for Ag-nanoparticles and titania were prepared from Ag salt and a titanium complex. The resistivity of the films was of the order of 10−2 to 10−5 Ω cm with film thicknesses in the range 100–260 nm. The percolation threshold was identified at a φAg value of 0.30. The lowest electrical resistivity of 10−5 Ω cm at 25 °C was recorded for the composite with the Ag fraction, φAg, of 0.55. X-ray diffraction (XRD), field-emission scanning electron microscope (FE-SEM), and transmission electron microscopic (TEM) evaluation of the effect of the morphology and the nanostructures of the Ag nanoparticles in the composite thin films on the electrical resistivity of the film revealed that the films consist of rutile, anatase, and metallic Ag nanoparticles homogeneously distributed in the titania matrix. It could be deduced that the electrical resistivity of the thin films formed at 600 °C was unaffected by the anatase/rutile content within the thin film, whereas the shape, size, and separation distance of the Ag nanoparticles strongly influenced the electrical resistivity of the Ag-nanoparticle/titania composite thin films.  相似文献   

19.
Polycrystalline BiFe0.25Cr0.75O3 thin films have been fabricated via a chemical deposition technique at various thicknesses (60-, 130-, 190-, 240 nm). The effect of Cr substitution on BiFeO3 structures have been briefly discussed by performing X-ray diffraction and SAED pattern. The nature of the films surface at different thicknesses were briefly discussed using scanning electron microscope and transmission electron microscope. Roughness and other amplitude parameters of the film at different thickness are studied through atomic force microscopy. The result indicates that, when changing the thickness of the film, the average bond length gets changed causing difference in electrical and magnetic properties. Electrical and dielectric study reveals thickness dependent property and is deeply understood from space charge, oxygen vacancies and super-exchange interaction. Film at 60 nm shows higher magnetization with 8.5042 emu/cm3 and with a retentivity of 3.852 emu/cm3 than the thick film. Further, the spin-cooling behavior and magnetization below room temperature from 2 to 300 K were analyzed briefly for spintronics applications.  相似文献   

20.
In this work, low content indium doped zinc oxide (IZO) thin films were deposited on glass substrates by RF magnetron sputtering using IZO ceramic targets with the In2O3 doping content of 2, 6, and 10 wt%, respectively. The influences of In2O3 doping content and substrate temperature on the structure and morphology, electrical and optical properties, and environmental stability of IZO thin films were investigated. It was found that the 6 wt% doped IZO thin film deposited at 150?°C exhibited the best crystal quality and the lowest resistivity of 9.87?×?10?4 Ω cm. The corresponding Hall mobility and carrier densities were 9.20 cm2 V?1 s?1 and 6.90?×?1020 cm?3, respectively. Compared with 2 wt% Al2O3 doped ZnO and 5 wt% Ga2O3 doped ZnO thin films, IZO thin film with the In2O3 doping content of 6 wt% featured the lowest surface roughness of 1.3 nm. It also showed the smallest degradation with the sheet resistance increased only about 4.4% at a temperature of 121?°C, a relative humidity of 97% for 30 h. IZO thin film with 6 wt% In2O3 doping also showed the smallest deterioration with the sheet resistance increased only about 2.8 times after heating at 500?°C for 30 min in air. The results suggested that low indium content doped ZnO thin films might meet practical requirement in environmental stability needed optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号