首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to investigate mechanisms of phase transitions of supercooled water in a triple-point-of-water (TPW) cell when a mush method was used to create an ice mantle, an automated apparatus using small TPW cells was developed to obtain the TPW. In this article, the design principle, the apparatus, and the procedure for an automated formation of ice mantles in small TPW cells are described. Supercooled water in small TPW cells spontaneously transformed into uniform metastable dendritic crystals throughout the cells at supercoolings ranging from 5.85 °C to 8.77 °C and then changed into stable hexagonal closed-packed cellular crystals, forming an outer ice mantle from the outside inward. Some pertinent explanations based on thermodynamic solidification theory were used to describe the phase transition process in the mush method. In addition, the experimental results indicated that the realized temperatures of water in the small TPW cells were in good agreement within 0.1 mK approximately 6 h after the initial spontaneous crystallization had occurred. Finally, the small TPW cells (s/n 008 and s/n 001) were directly compared with a conventional TPW cell (s/n NIM-1-211); the temperature differences between the small TPW cells and the regular TPW cell were less than 0.21 mK.  相似文献   

2.
液氮冻制冰套法对水三相点温度的影响   总被引:3,自引:2,他引:3  
闫小克 《计量学报》2004,25(4):318-321
介绍了液氮作为冷却剂在水三相点容器内冻制冰套的方法。利用该方法同时在两个不同真空度的水三相点容器内分别冻制冰套。通过实验,研究了此方法对所复现的水三相点温度的影响。实验结果表明:冻制过程中产生的应力以及开始生成的小冰晶引起水三相点温度偏低;并且,其对水三相点温度的影响随着水三相点容器内真空度的降低而增大。随着应力慢慢消除,小冰晶逐渐长大为大冰晶,所复现的水三相点值逐渐回升并趋于稳定。因此,为了高精度复现和准确测量水三相点,采用该冻制方法时,必须将冰套老化至少5天以后,才可以消除其对水三相点温度的影响。  相似文献   

3.
The definition of the kelvin is based on the triple-point temperature of highly pure water having the isotopic composition of ocean water (more specifically, the isotopic composition is equivalent to that of VSMOW). Belgian national metrology realizes the triple point of water (TPW) as the mean of temperatures measured in three sealed cells. In order to take into account the isotopic composition effect on TPW temperature, the ensemble of cells was replaced in 2006. Three new cells, with isotopic analysis of the contained water, were bought from different manufacturers. The new group of cells was compared to the old TPW national realization in order to quantify the effect of moving towards a new reference. Two different standard thermometers were used in all the cells to take 10 daily measurements on two different ice mantles. The measured resistances were corrected for hydrostatic head, self-heating, and isotopic composition (when available) before calculating the difference. A difference of about 87 μK was found between the old and the new national references. This difference is transferred to customers’ thermometers and cells through calibrations, and the change has to be documented in each new calibration certificate. An additional consequence of the new ensemble cell implementation is the significant reduction in the spread of deviations of individual cells from the mean temperature. The maximum difference between two cells of the ensemble is 96 μK for the old reference cells and 46 μK for the new reference cells corrected for isotopic composition effects.  相似文献   

4.
Three comparisons of different triple-point-of-water (TPW) realizations in Europe have been organized under the auspices of EUROMET (EUROMET Projects 278, 549, and 714). Thirty European national metrology institutes were involved in these three comparisons that took place from 1994 to 2005. The aim of these successive projects was to assess the uncertainties associated with the practical realization of the triple point of water in Europe. Fifty-four TPW local cells were compared to a traveling standard cell (ref 679) circulated with an isothermal enclosure. The same equipment was used for the three projects, and LNE-INM regularly checked the stability of the TPW standard cell. Recently, LNE-INM has devoted efforts to bring the French standard at the triple point of water into close agreement with CIPM Recommendation 2 (CI-2005). The isotopic fractionation between water and ice when the cell is in use was experimentally studied. Several new TPW cells delivered by the manufacturer with water samples were added to our batch of reference cells. A French laboratory analyzed the isotopic compositions of these samples. These actions allow the French national definition of temperature at the triple point of water to be changed. A new temperature was associated with TPW cell 679 in agreement with the CIPM recommendation. In this presentation, the latest TPW cell measurements carried out by LNE-INM are presented. The results from EUROMET Projects 278, 549, and 714 are investigated in light of these changes.  相似文献   

5.
邱萍  闫小克  汪洪军  王宁  刘薇  梁俣 《计量学报》2022,43(2):196-200
水三相点是ITS-90国际温标中最重要的定义固定点,其复现不确定度是传递到整个温标的.目前,通常采用不同的冻制方法在硼硅玻璃或石英水三相点容器内冻制均匀的冰套来复现水三相点.冻制过程中,由于在水三相点容器内生成冰桥,会造成容器的破裂.为了解决此难题,研制了金属外壳水三相点容器,利用高纯水自发相变原理,在液体槽内自动冻制...  相似文献   

6.
Recent international comparisons showed that there is still room for improvement in triple point of water (TPW) realization uncertainty. Large groups of cells manufactured, maintained and measured in similar conditions still show a spread in the realized TPW temperature that is larger than the best measurement uncertainties (25 µK). One cause is the time-dependent concentration of dissolved impurities in water. The origin of such impurities is the glass/quartz envelope dissolution during a cell lifetime. The effect is a difference in the triple point temperature proportional to the impurities concentration. In order to measure this temperature difference and to investigate the effect of different types of impurities, we manufactured doped cells with different concentrations of silicon (Si), boron (B), sodium (Na) and potassium (K), the glass main chemical components. To identify any influence of the filling process, two completely independent manufacturing procedures were followed in two different laboratories, both national metrology institutes (VSL, Netherlands and UME, Turkey). Cells glass and filling water were also different while the doping materials were identical. Measuring the temperature difference as a function of the liquid fraction is a method to obtain information about impurities concentrations in TPW. Only cells doped with 1 µmol·mol?1 B, Na and K proved to be suitable for measurements at different liquid fractions. We present here the results with related uncertainties and discuss the critical points in this experimental approach.  相似文献   

7.
In 2005, the National Institutes of Standards and Technology (NIST) and Fluke’s Hart Scientific Division initiated a study to validate the isotopic correction algorithm applied to the realization temperature of triple point of water (TPW) cells. Additionally, the study quantified the impact of water sample impurities on the TPW cell realization temperature. For this study, eight TPW cells containing water of the same nominal isotopic concentration as Vienna Standard Mean Ocean Water (VSMOW) were used. Five of the cells were manufactured with fused-quartz envelopes and the remaining three with borosilicate envelopes. One TPW cell of each type was uniquely designed so that water samples could be periodically removed to analyze the isotopic composition and to monitor any changes in water purity with time and thereby correlate changes in composition with changes in realization temperature. The borosilicate TPW cells gave an average drift of −13 μK · yr−1 and the more stable fused-quartz TPW cells gave an average drift of −2 μK · yr−1.  相似文献   

8.
Small triple-point-of-water cells (mini-TPW) are used in laboratories to monitor the stability of PRTs. Compared with a standard TPW cell, heat flow in the thermometer well usually disturbs the apparent equilibrium temperature to a larger extent in a mini-TPW cell due to its smaller dimensions. In this paper, the heat flow effect is studied on the basis of experimental data. Special attention is paid to the thermal conduction along a thin thermometer probe and to the self-heating of the probe. A new method for compensating the error due to the heat flow is presented. It is shown that the compensated results are in good agreement with results obtained with standard TPW cells. The determined differences were well within the estimated expanded uncertainty of 2 mK (k = 2). The heat flow effect was studied experimentally by controlling the temperature of the upper part of a PRT inserted in a mini-TPW cell. Also, the effect of different fillings of the measurement well of the cell was studied. Without the compensation, thin metal-sheathed PRTs (1.6 and 2.2 mm) indicated 3 to 9 mK differences between mini-TPW and standard TPW cells.  相似文献   

9.
水三相点的高精度复现及准确测量是保证国际温标ITS-90实施的关键。水三相点容器内高纯水的同位素组成会影响复现的水三相点温度值。为了提高水三相点复现水平,减小氢氧同位素的影响,研制了带有氢氧同位素分析的石英及硼硅玻璃高准确度水三相点容器。为了评价容器的性能,开展了硼硅玻璃和石英水三相点容器的比对。实验结果表明:同位素修正前,石英玻璃和硼硅玻璃水三相点容器复现的水三相点在0.058mK范围内一致;同位素修正之后,容器之间的差异在0.017mK范围内一致。采用高准确度水三相点容器复现水三相点的扩展不确定度为0.066mK(k=2)。  相似文献   

10.
With a certain regularity, national metrology institutes conduct comparisons of water triple-point (WTP) cells. The WTP is the most important fixed point for the International Temperature Scale of 1990 (ITS-90). In such comparisons, it is common practice to simply average all the single measured temperature points obtained on a single ice mantle. This practice is quite reasonable whenever the measurements show no time dependence in the results. Ever since the first Supplementary Information for the International Temperature Scale of 1990, published by the Bureau International des Poids et Mesures in Sèvres, it was strongly suggested to wait at least 1 day before taking measurements (now up to 10 days), in order for a newly created ice mantle to stabilize. This stabilization is accompanied by a change in temperature with time. A recent improvement in the sensitivity of resistance measurement enabled the Istituto Nazionale di Ricerca Metrologica to detect more clearly the (possible) change in temperature with time of the WTP on a single ice mantle, as for old borosilicate cells. A limited investigation was performed where the temperature of two cells was monitored day-by-day, from the moment of mantle creation, where it was found that with (old) borosilicate cells it may be counterproductive to wait the usual week before starting measurements. The results are presented and discussed, and it is suggested to adapt the standard procedure for comparisons of WTP cells allowing for a different data treatment with (old) borosilicate cells, because taking the temperature dependence into account will surely reduce the reported differences between cells.  相似文献   

11.
Isotopic analysis of the water used in KRISS triple point of water (TPW) cells was performed by three separate laboratories. The δD and δ 18O isotopic composition of six ampoules, made from two TPW cells, were analyzed by isotope ratio mass spectrometers. The analysis data showed that δD and δ 18O were − 62.17‰ and − 9.41‰ for the KRISS-2002-Jan cell, and − 36.42‰ and − 4.08‰ for the KRISS-2005-Jun cell. The temperature deviation of the triple point of water for these cells calculated from Kiyosawa’s data and the definition of the TPW were + 45.07μK for the KRISS-2002-Jan cell, and + 25.49μK for the KRISS-2005-Jun cell. The KRISS TPW temperature was + 92μK higher than the CCT-K7 KCRV after correcting for the deviation of the isotopic composition from Vienna Standard Mean Ocean Water.  相似文献   

12.
To investigate an ideal container material for the triple point of water (TPW) cell and to reduce the influence to the triple-point temperature, due to the deviation of the isotopic composition of the water, both borosilicate and fused-quartz glass shelled TPW cells with isotopic composition substantially matching that of Vienna Standard Mean Ocean Water (VSMOW) were developed and tested. Through a specially designed manufacturing system, the isotopic composition, δD and δ18 O, of the water in the TPW cell could be controlled within ±10‰ (per mil) and ±1.5‰, respectively, resulting in control of the isotopic temperature correction to better than ± 8 μK. Through an ampoule attached to the cell, the isotopic composition of the water in the cell could be individually analyzed . After manufacture, the initial triple-point temperatures of the two types of cell were measured and compared to assess the quality of the cells and manufacturing process. Cells fabricated with the new system agree within 50 μK. Two innovatively designed borosilicate and fused-quartz TPW cells were made, each with six attached ampoules. One ampoule was removed every 6 months to track any changes in purity of the water over time.  相似文献   

13.
A miniature metallic cell for the water triple point (TPW, temperature 273.16 K) was developed for capsule-type thermometer calibrations for realizations with adiabatic calorimetry techniques. The LNE-INM/Cnam previously developed a copper cell for the water triple point and the techniques for cleaning, filling, and sealing. On the basis of previous work, a new copper cell prototype for the TPW was developed and filled at the LNE-INM/Cnam. Measurements were performed using an appropriate calorimeter and a comparison block containing several thermometers. Preliminary results show a scatter of the temperatures measured at the phase transition of the order of 0.2 mK when measurements are repeated over a short-term period (1 month). A positive drift in the phase transition temperature of about 30μK·month−1 was observed over several months. Studies are in progress to improve the cell, to reduce the reproducibility uncertainty to less than 0.1 mK and to have a phase transition with better temporal stability.  相似文献   

14.
Samples of concrete at different water-to-cement ratios and air contents subjected to freeze/thaw cycles with the lowest temperature at about ?80 °C are investigated. By adopting a novel technique, a scanning calorimeter is used to obtain data from which the ice contents at different freeze temperatures can be calculated. The length change caused by temperature and ice content changes during test is measured by a separate experiment using the same types of freeze–thaw cycles as in the calorimetric tests. In this way it was possible to compare the amount of formed ice at different temperatures and the corresponding measured length changes. The development of cracks in the material structure was indicated by an ultra-sonic technique by measuring on the samples before and after the freeze–thaw tests. Further the air void structure was investigated using a microscopic technique in which air ‘bubble’ size distributions and the so-called spacing factor, indicating the mean distance between air bubbles, were measured. By analyzing the experimental result, it is concluded that damages occur in the temperature range of about ?10 °C to ?55 °C, when the air content is lower than about 4% of the total volume. For a totally water-saturated concrete, damages always occur independently of the use of entrained air or low water-to-cement ratios. It is, further, concluded that the length changes of these samples correspond to the calculated ice contents at different temperatures in a linear fashion.  相似文献   

15.
为了研究水源对水三相点温度的影响,采用4种不同的水源并按照相同的制作工艺研制高质量的水三相点容器.同时,将这些容器进行了比对实验.比对结果表明:这些不同水源的水三相点容器复现的水三相点值在±0.02 mK范围内一致.故推断出水源对水三相点温度的影响很小.  相似文献   

16.
Contamination of triple-point-of-water (TPW) cells by the chemical components of the borosilicate glass that contains the water is now widely recognized as the principal contributor to long-term drift of the cell temperature. To add to the available experimental data, a comparison of 24 TPW cells of various ages (from 10 years to 59 years), manufacturers (NRC, Jarrett, Isotech), and materials (borosilicate glass and fused quartz) was undertaken in 2013. Twelve cells from this group were compared to one another in 1997. By comparing the current inter-cell temperature differences to those determined 16 years earlier, it was found that some cells have remained stable, others have become colder (as might be expected from ongoing dissolution of the glass), and one or two show an apparent increase in temperature that seems anomalous. Also included among the 24 cells are five cells of borosilicate glass and five of fused quartz that were purchased 10 years ago. By comparing the relative temperature differences among this group of borosilcate and fused-quartz-encapsulated cells to the values obtained when they were last compared 6 years ago, it was found that the average temperature of the borosilcate group of cells decreases by \(-6\,\upmu \mathrm{K}\,{\cdot }\,\mathrm{year}^{-1}\,({\pm }2\,\upmu \mathrm{K}\,{\cdot }\,\mathrm{year}^{-1})\) , in reasonable agreement with an average drift of \(-4\,\upmu \mathrm{K}\,{\cdot }\,\mathrm{year}^{-1}\) suggested 12 years ago. It was concluded that fused quartz is the superior container for TPW cells.  相似文献   

17.
高分子吸水树脂作为蓄冷材料的性能研究   总被引:1,自引:0,他引:1  
研究了不同吸水倍率的高分子吸水树脂的相变温度、相变潜热及作为蓄冷材料在35℃环境下的相变时间,并与冰做了对比。结果显示:吸收不同倍率水的高分子树脂,相变温度和相变潜热基本与水相似,随着吸水倍率的增加,相变潜热越接近于水的潜热;在相同条件下放置于隔冷袋中的高分子吸水树脂,在35℃的高温环境中,可以维持20℃以下低温5h,比冰多了将近1h,克服了渗漏的缺点,在蓄冷领域表现出了明显的优势。  相似文献   

18.
根据弯曲试验的原理设计并制造了模具,通过物理实验得出超高强度钢板Docol1200M在不同温度下V形弯曲和U形弯曲时的回弹,通过对实验结果的分析总结出回弹角度随温度变化的规律。  相似文献   

19.
Water triple-point (WTP) cells are the most important standards in laboratories that calibrate standard platinum resistance thermometers (SPRT). Over the years, different methods for manufacturing WTP cells have been proposed; some quite simple, others more complex. This paper describes a straightforward method for manufacturing WTP cells. The method is based on the fact that the pressure present when water is boiling is its vapor pressure, and because of that the amount of residual dissolved gases, if any, is very small. This makes the use of vacuum pumps unnecessary. The bulb of the WTP cell is filled with pure water produced by multiple distillations or by deionizer systems. The water is then boiled inside the bulb by a furnace built specifically for this purpose. After boiling the water for at least 30 min, the furnace is switched off, and a valve connected to the filling port of the cell is closed, in order to ensure that only water vapor and liquid water are present inside the WTP cell. The cell is then removed from the furnace and sealed when its temperature decreases. The paper also describes the procedure used to evaluate the WTP cells manufactured by this method, through comparisons against other reference standards, manufactured by more traditional approaches. The results show that the temperatures of the WTP cells manufactured by this new method have similar values to the ones obtained in WTP cells manufactured by traditional methods.  相似文献   

20.
To learn more on ice crushing phenomena against a compliant stiffened plate structure, near full-scale ice crushing tests were conducted in Aker Arctic test basin with a 1:3 scaled model. The dimensions of the to be crushed ice sheet and the stiffened plate were chosen to present a full size ship or offshore structure steel plating which are designed to withstand the crushing loads of 60 cm thick level ice. A major difference to the crushing tests published earlier in literature was that the compliance of one stiffener could be adjusted. The instrumentation in the plate included both strain gauges for load paths from the plate to the stiffeners and a large tactile sensor for detailed direct crushing pressure distribution measurement. In order to have repeatable and homogeneous model ice properties the ice blocks were manufactured by snow ice technique with low salinity water impregnation under vacuum in the mould. Altogether 22 ice blocks were crushed with different ice velocities and plate compliancy. The well-known line like contact prevailed in continuous crushing. The test data indicates that the crushing load distribution is independent from the underlying plate stiffness distribution and no higher crushing pressure at the location of stiffeners was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号