首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
《Ceramics International》2023,49(8):12327-12333
Keeping in view of the hazardous application of tetracycline hydrochloride antibiotic, an efficient CoFe2O4/NiFe2O4 heterojunction photocatalyst has been prepared hydrothermally by combining CoFe2O4 and NiFe2O4 nanoplates. The CoFe2O4/NiFe2O4 composite with the improved photocatalytic activity can be employed for removal of tetracycline hydrochloride antibiotic, comparing to the bare CoFe2O4 and NiFe2O4. The optimized sample 5%-CoFe2O4/NiFe2O4 shows the high photocatalytic degrading tetracycline with 76.1% removal efficiency in 60 min. These improved photocatalytic activities are attributed to the extended visible light absorption and enhanced charge separation following S-scheme route as confirmed from photoluminescence and electrochemical studies. From the charge trapping experiments, it is confirmed that superoxide radical and holes in the valence band of NiFe2O4 with high thermodynamic energies are responsible for the photodegradation of the target pollutant. This work provides sufficient attention towards the preparation of low cost materials for the removal of highly hazardous pollutants being present in water.  相似文献   

2.
《Ceramics International》2023,49(10):15164-15175
Magnesium aluminate spinel (MgAl2O4) ceramics are high-performance and carbon-free materials widely used in both military and civilian fields. However, it is usually challenging to densify during the solid-state sintering process. The excellent properties of some rare earth oxides have been proved to promote the densification of MgAl2O4 spinel ceramics. But the mechanism of promoting sintering is not clear. In the present work, MgAl2O4 spinel ceramics have been successfully fabricated by co-doping CeO2 and La2O3 via a single-stage solid-state reaction sintering. The effects of addition amounts of CeO2 and La2O3 on phase compositions, microstructures, sintering characteristics, cold compressive strength, and thermal shock resistance of as-prepared MgAl2O4 spinel ceramics were systematically investigated. The results show that by co-doping CeO2 and La2O3 can increase the defect concentration due to the lattice distortion. This could promote the movement of Al3+ and Mg2+ at high temperature, which is beneficial to the formation of more secondary MgAl2O4 spinel. t-ZrO2 with more Ce4+ filling between spinel grains could prevent the growth of grains and promote the densification, besides the new-formed LaAlO3 that was mainly distributed along the grain boundary of the MgAl2O4 phase, both of which were favorable for the formation of dense microstructure of MgAl2O4 spinel materials. At the same time, the formation of more secondary MgAl2O4 spinel and sintering densification also improve the mechanical properties of spinel ceramics. La3+ will segregate to the spinel grain boundary, preventing grain boundary movement and absorbing the main crack's fracture energy. With 3 wt% CeO2 and 3 wt% La2O3 co-doping, the bulk density of the sample increased from 3.02 g∙cm−3 to 3.55 g∙cm−3; the apparent porosity decreased from 12.21% to 9.97%; the cold compressive strength increased from 172.88 MPa to 189.54 MPa; and the residual strength retention ratio after thermal shock increased from 84.92% to 89.15%.  相似文献   

3.
《Ceramics International》2019,45(14):16904-16910
There is still a great challenge to develop new-style battery-type electrode materials with low resistance, large surface area, and stable microstructures on carbon fabric, which limited the development of flexible devices. In this work, NiCo2O4 nanoneedle@NiMn2O4 nanosheet core-shell arrays are constructed on the carbon fabric as a high-capacitance and long-life supercapacitor electrode for the first time. Benefiting from this kind of binder-free core-shell microstructure, the CF@NiCo2O4@NiMn2O4 electrode displays extraordinary specific-capacitance of 539.2 F g−1 at a current density of 2 A g−1, and nearly 93.0% retention of total capacitance even after discharging 5000 cycles. The outstanding properties of the hybrid electrode demonstrate that it is of great potential for flexible supercapacitors and batteries the application.  相似文献   

4.
Magnetic materials have shown significant influence in the process of bone regeneration. In order to combine the bone repairing capability of tricalcium phosphate (TCP) ceramic with magnetic material, porous TCP–MgFe2O4 composite scaffolds were successfully prepared by three-dimensional (3D) gel-printing technology, and the effect of different MgFe2O4 contents on TCP–MgFe2O4 composite scaffolds was studied. The viscosity of printing slurry prepared with polyvinyl alcohol as binder decreased with the increase of shear rate, showing shear thinning. Results show that following with MgFe2O4 content increasing from 30 to 70 wt%, the compressive strength of the composite scaffolds increased from 8.45 to 10.58 MPa, the saturation magnetization increased from 3.07 to 7.20 emu/g, and the weight loss rate of degradation in vitro increased from 1.83% to 2.1% after 4 weeks, respectively. Live and dead staining shows that MC3T3-E1 cells had better proliferation on TCP–MgFe2O4 composite scaffolds than TCP scaffolds. Compared with pure TCP scaffolds, the addition of MgFe2O4 improves the comprehensive performance of scaffolds and meets the application requirements of bone repairing.  相似文献   

5.
This study used a traditional solid-state reaction method to prepare a series of composite ceramics in the 0.7Mg4Nb2O9-(0.3-x)ZnAl2O4-xTiO2 ternary system. Crystalline phases and microstructure of Mg4Nb2O9-ZnAl2O4-TiO2 dielectric ceramic composites were investigated and correlated with the relevant dielectric properties. It was observed that the addition of Ti4+ substituted Nb5+ in the Mg4Nb2O9 structure, which promoted the decomposition of Mg4Nb2O9 to form the second phase, Mg5Nb4O15, during sintering. The synergistic effect of ZnAl2O4-TiO2 co-doping promoted the Mg4Nb2O9 ceramic densification. The sample (0.7Mg4Nb2O9-(0.3-x)ZnAl2O4-xTiO2) with x = 0.15?0.2 exhibited dielectric constants of 13–14, larger than those of ZnAl2O4, Mg4Nb2O9 and Mg5Nb4O15, due to the NbO6 octahedra distortion resulting from the substitution of Al3+/Ti4+ for Nb5+ in Mg4Nb2O9 and Mg5Nb4O15. The long-range order of the NbO6 octahedra was enhanced by co-doping ZnAl2O4 and TiO2, thereby enhancing the Qxf value. A dielectric constant of 13.1, Qxf value of 366,000 GHz and a τf of ?60.8 ppm/°C were obtained from 1300 °C sintered 0.7Mg4Nb2O9-0.15ZnAl2O4-0.15TiO2. These results show that 0.7Mg4Nb2O9-0.15 ZnAl2O4-0.15TiO2 ceramic is a good candidate for microwave electronic device applications.  相似文献   

6.
Spinel-structured NiMn2O4 ceramics, with different valence Ni sources, were originally prepared using Ni2O3 and NiO as raw materials, and the effects of different valence Ni sources on their electrical properties were first investigated. XRD patterns show that both Ni2O3-based and NiO-based NiMn2O4 ceramics are single cubic spinel structures. SEM/EDS images indicate that the NiMn2O4 ceramics exhibited high density at the experiment-determined sintering temperatures. XPS results and Raman drifts prove that the Ni valence-induced changes in Mn ions at B sites played a significant role in the electrical properties and thermal stability of NiMn2O4 ceramics. Compared with NiO-based NiMn2O4, the resistivity at 25°C (ρ25°C) of Ni2O3-based NiMn2O4 increased dramatically from 3109 to 106958 Ω cm, the thermal constant (B25/50) increased from 3264 to 4473 K, and the resistance shifts after annealing for 1000 h at 150°C decreased from 0.80% to 0.74%. The investigation of the relationship between the material properties and valence of Ni sources has provided a new and effective way for designing the spinel-structured negative temperature coefficient (NTC) materials by modulating the valence of ions at A sites in the raw materials.  相似文献   

7.
ABSTRACT

A novel high closed porosity Al2O3-MgAl2O4 refractory aggregate has been successfully fabricated by utilising superplasticity with Al2O3 and MgO as raw materials, SiC as high temperature pore-forming agent. The effects of the addition amounts of MgO and SiC on porosity, sintering behaviours, phase composition, pore size distribution and microstructure of the refractory aggregate have been investigated. The formation mechanism of the closed pore in the refractory aggregate has been discussed. The results showed that the MgO can improve the superplastic deformation ability of Al2O3-based ceramic at high temperature. With the content of MgO and SiC increased, the closed porosity and the pore size increased. The oxidation of SiC improved the sinterability of materials at the initial stage of sintering, and then the released gases due to the further oxidation of SiC promoted the formation of closed pores by motivating the superplastic deformation ability of Al2O3-based materials.  相似文献   

8.
Novel nano quaternary metals solid solutions from MgFe2O4 and ZnMn2O4 were synthesized using a sol-gel procedure. The development of a solid solution and the formed phase were examined by phase analysis utilizing the X'Pert High Score Plus program and Fourier transform infrared (FTIR) spectroscopy technique. Rietveld analysis of X-ray diffraction data (XRD), scanning electron microscope (SEM/EDS) and transmission electron microscope (TEM) were applied to determine the lattice parameters, crystallite size, different cations distribution and elemental analysis of the formed solid solutions. The measured dielectric properties of obtained solid solutions are found to be affected by the composition ratio (x). The solid solution (1-x)ZnMn2O4/(x)MgFe2O4 samples exhibited a ferroelectric–paraelectric transition at ferroelectric Curie temperature (Tc). The different hopping mechanisms in the different samples were also examined. The electrochemical performance was tested and influence of composition ratio (x) on the cathodic and anodic potential was investigated. The specific capacitance (Cs) value of electrodes depended on the composition ratio (x) beside the type of cations forming oxides. The (0.9)MgFe2O4/(0.1)ZnMn2O4 sample showed the best performance as a supercapacitor material. The outstanding electrochemical property of the (0.9)MgFe2O4/(0.1)ZnMn2O4 electrode was further confirmed by EIS inspection. The super stability of MgFe2O4/ZnMn2O4 solid solution could be attributed to the activation of the solid solution materials during the CV cycling and the synergistic effects.  相似文献   

9.
《应用陶瓷进展》2013,112(3):119-128
Abstract

Nanocrystalline MgAl2O4 and ZrO2-MgAl2O4 powders were synthesised by combustion and conventional solid state reaction routes. The synthesised powders were processed, dry pressed, and sintered for 3 h at temperatures ranging from 1550 to 1625°C. The sintered pellets were then characterised in terms of phase (XRD), microstructure (SEM), relative density, apparent porosity, water absorption, hardness, three point bend strength, and fracture toughness. The XRD studies revealed that ZrO2 was present in tetragonal form in the case of combustion synthesised powders (CSP), whereas in powders obtained by solid state reaction (SSP) it was present in the monoclinic form. This study also revealed that the addition of ZrO2 improved the mechanical properties of sintered MgAl2O4 samples: 20 wt-%ZrO2-MgAl2O4 composites prepared from CSPs and conventional SSPs and sintered at 1625°C for 3 h had fracture toughness of 5·96 and 4·33 MPa m1/2 and three point bend strength of 269 and 98 MPa respectively. Higher sintered density, the presence of tetragonal zirconia as a major phase, and the finer microstructure are probably responsible for the superior mechanical properties exhibited by sintered CSP materials as compared with the sintered SSPs.  相似文献   

10.
Equilibrium diagrams for the joins CaAl4O7-MgAl2O4, CaAl4O4-Ca2Al2SiO7-MgAl2O4, and Ca2Al2O4–Ca2Al2SiO7-MgAl2O4 were determined by the classical quenching method and hot stage microscopy. Liquidus relations in the quaternary subsystem are discussed. Two univariant curves are located within the composition tetrahedron. The quaternary invariant point is a peri-tectic. Technological application of results is indicated.  相似文献   

11.
The BaO–Sm2O3 system is of interest for the optimization of synthesis of electroceramics. The only systematic experimental study of phase equilibria in the system was performed more than 40 years ago. The reported experimental values of the enthalpy of formation of BaSm2O4 are in conflict, and the reported compound Ba3Sm4O9 has never been confirmed. In this work we synthesized BaSm2O4 by solid‐state reaction and determined its heat capacity, enthalpy of formation, and phase transitions by differential scanning calorimetry, high‐temperature oxide melt solution calorimetry and ultra‐high‐temperature differential thermal analysis, respectively. We confirmed the existence of Ba3Sm4O9 and its apparent stability from 1873 to 2273 K by X‐ray diffraction on quenched laser‐melted samples but were not able to obtain single‐phase material for calorimetric measurements. The CALPHAD method was used to assess phase equilibria in the BaO–Sm2O3 system, using both available literature data and our new measurements. A self‐consistent thermodynamic database and the calculated phase diagram of the BaO–Sm2O3 system are provided. This work can be used to model and thus to understand the relationships among composition, temperature, and microstructure for multicomponent systems with BaO and Sm2O3.  相似文献   

12.
《Ceramics International》2020,46(14):22313-22320
Design of high-performance electromagnetic (EM) wave absorbing materials has been regarded as an effective solution to excessive EM wave interference problem. As a promising candidate, NiCo2O4 absorbers have attracted enormous research attentions. However, currently reported morphology-manipulation synthetic methods of NiCo2O4 absorbers are time-consuming and require high energy consumption, which inhibit their practical applications. Herein, a more facile and cost-effective solution combustion synthesis was utilized to fabricate NiCo2O4 materials. The absorber prepared by using glycine as fuel displayed the best EM wave absorption performance. Impressively, ultra wide absorption bandwidth of 7.44 GHz from 10.56 GHz to 18 GHz could be achieved with relatively thin thickness of 2.1 mm NiCo2O4 sample fabricated in this work displayed the widest effective absorption bandwidth (EAB) among reported NiCo2O4-based EM wave absorbing materials so far. In view of its simple and low-cost synthetic process and excellent EM wave dissipation capacity, NiCo2O4 samples in this work showed great feasibility as practical absorber. In addition, our findings may also provide new sight for facile preparation of other high-performance EM wave absorbers by solution combustion synthesis instead of complex morphology-manipulation routes.  相似文献   

13.
Engineered materials are crucial for the higher efficiency of supercapacitors. Current work presents roughly shaped spherical NiFe2O4 nanoparticles dispersed in the SiO2 matrix NiFe2O4/SiO2 as a newfangled electrode material for supercapacitors with remarkable performance. Designing the NiFe2O4/SiO2 nanostructure with a sol-gel method followed by the Stober method to grow silica has instigated NiFe2O4/SiO2 as dynamic material with higher electrochemical activity. Physicochemical aspects of NiFe2O4/SiO2 nanostructures are evaluated using Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy analysis. The electrochemical activity is evaluated by cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) representing the comparable efficiency and reversibility of the electrode materials. The prepared electrode shows a capacitance of 925 F/g (154.1 mAh/g or 555 C/g) at 1 A/g, with 95.5% capacitance retention after 5000 cycles at 20 mA/cm2. The improved electrochemical performance of the NiFe2O4/SiO2 electrode can be subjected to prompt diffusion process provided by NiFe2O4/SiO2 and enhanced redox reactions owing to the high surface area. The mentioned features decrease the total impedance of the electrodes as suggested by electrochemical impedance spectroscopy (EIS).  相似文献   

14.
The present study aimed to systematically study the transitions and consequential effects of antimony oxide (Sb2O3 or Sb2O5) additions over the properties of a SnO2-based varistor system. High energy ball-milling and conventional sintering were used to obtain the samples with the following molar composition: (98.95-X)% SnO2 - 1% Co3O4 - 0.05% Cr2O3 - X% Sb2O3/Sb2O5 where X = 0, 0.05, 0.1, 0.2 and 0.4 mol%. The thermal analysis suggested the in-situ formation of Sb2O4 at ~450 °C from Sb2O3 or Sb2O5 during the sintering of mixed oxides. SEM, XRD, and electrical analysis revealed similar results by using Sb2O3 or Sb2O5; the addition of 0.05 mol% antimony oxide provides the foremost properties. The transition equations from Sb2O3 or Sb2O5 to Sb2O4 demonstrate equivalency in the amount of Sb2O4 formed. That fact, besides the results obtained, were used to discuss a reasonable route for Sb3+ and Sb5+ incorporation within the SnO2 lattice.  相似文献   

15.
We studied the low temperature sintering and the reaction in BaO–Sm2O3–4TiO2 ceramics with boron-based additives for the application to microwave dielectric devices. The amount of the boride glasses of B2O3 and BaB2O4 was varied from 1 to 10 wt.% and the green compacts were sintered in the temperature range of 900–1200 °C for 2 h. When B2O3 was added, second phases of Sm2Ti2O7, BaTi(BO3)2, Ba2Ti9O20, and TiO2 were formed, while BaB2O4 addition resulted in the formation of BaSm2Ti4O12 single phase without second phases. On the basis of these results, it is regarded that the B2O3 is a reactive glass and the BaB2O4 is a non-reactive glass. The second-phase development, sintering behavior and microwave dielectric characteristics of BaO–Sm2O3–4TiO2 ceramics were examined.  相似文献   

16.
Pt/CoAl2O4/Al2O3, Pt/CoOx/Al2O3, CoAl2O4/Al2O3 and CoOx/Al2O3 catalysts were studied for combination CO2 reforming and partial oxidation of CH4. The results indicate that Pt/CoAl2O4/Al2O3 is the most effective, and XRD results indicate that Pt species are well dispersed over the Pt/CoAl2O4/Al2O3. High dispersion is related to the presence of CoAl2O4, formed during calcining at high temperature before Pt addition. In the presence of Pt, CoAl2O4 in the catalyst could be reduced partially at 973 K. Based on these results, it appears that zerovalent platinum with high dispersion and zerovalent cobalt resulting from CoAl2O4 reduction are responsible for high activity in the Pt/CoAl2O4/Al2O3 catalyst.  相似文献   

17.
The synthesis of Pt-Ti4O7 microelectrode arrays is achieved from mixtures of TiO2 and Ti2O3 powders plus Pt particles by a thermal procedure commonly used in solid-state chemistry. Data obtained for the Pt-Ti4O7 materials by X-ray diffractometry and scanning electron microscopy are consistent with the existence of heterogeneous mixtures of Pt particles imbedded within the conductive Ti4O7 matrices. Rotated disc electrodes (RDEs) constructed from pure Pt and from the Pt-Ti4O7 materials are compared on the basis of their voltammetric and amperometric response for I and H2O2 in 0.10m H2SO4. The observed enhancement of current densities for the Pt-Ti4O7 RDEs is rationalized on the basis of the behaviour expected for microelectrode arrays.  相似文献   

18.
《Ceramics International》2017,43(2):2057-2062
A novel Ni@NiCo2O4 core/shells structure consisting of the Ni microspheres skeletons and nanosheet-like NiCo2O4 skins was designed and investigated as the electrochemical electrode for supercapacitor. Due to the unique architecture with Ni microspheres as the highly conductive cores improving the electrical conductivity of electrode and external nanosheet-like NiCo2O4 shells as the efficient electrochemical active materials facilitating the contact between the electrode and electrolyte, the as-prepared Ni@NiCo2O4 exhibited excellent electrochemical performance with high specific capacity of 597 F g−1 (1 A g−1) as well as remarkable capacitance retention of 96% (3000 cycles). These impressive results pave the way to design high-performance electrode materials for energy storage.  相似文献   

19.
《Ceramics International》2015,41(4):5881-5887
Large amounts of MgAl2O4 micro-rods were successfully synthesized using the molten-salt technology. The effect of KCl contents on the formation of MgAl2O4 micro-rods was investigated. The structure and morphology of MgAl2O4 were investigated by means of powder X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy, respectively. The experimental results showed that the contents of KCl significantly influenced the formation of MgAl2O4 micro-rods. MgAl2O4 micro-rods could be prepared at 1150 °C with a weight ratio of 100:1 between the salt and the starting materials. The formation of MgAl2O4 micro-rods could be suggested to be due to the inhomogeneous nucleation and orientated growth perpendicularly to the surfaces of Al2O3 grains. An impedance-type humidity sensor was finally fabricated based on the as-prepared MgAl2O4 micro-rods. According to tests of the humidity performance, MgAl2O4 micro-rods might be suitable for high-performance humidity sensors.  相似文献   

20.
《Ceramics International》2016,42(13):14976-14983
The design of electrode materials with desirable morphology is of great importance and challenge to fabricate high-performance supercapacitors. In this work, NiCo2O4 nanopetal, nanosheet, nanoneedle and nanorod arrays on nickel foam have been synthesized through a facile hydrothermal method. The morphologies of NiCo2O4 arrays can be easily controlled by adjusting the kinds of alkali source and the addition of NH4F. The electrochemical results show that the NiCo2O4 nanoneedles electrode has the optimal electrochemical performance among four samples, demonstrating its promising application potential for high performance supercapacitors. This investigation about morphology control of NiCo2O4 electrode materials and the relationship between the morphologies and corresponding electrochemical performances provides strategies to enhance the performance of supercapacitor electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号