首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tumour promoting properties of carcinogenic 2-acetylaminofluorene (AAF) in rat liver are essentially unknown. We proposed that mitochondria are a target for the cytotoxic effects of 2-nitrosofluorene (NOF), a metabolite of AAF, since NOF induces a redox-cycle at complex I and complex III of the respiratory chain, and impairs respiration and oxidative phosphorylation. We now demonstrate that NOF is a potent inducer of the mitochondrial permeability transition pore (PTP) in isolated mitochondria. In the presence of Ca2+, NOF induced rapid swelling of mitochondria in a dose-dependent manner and depolarized the mitochondrial membrane. Permeability transition as well as depolarization were abolished completely by pre-incubation with the PTP inhibitor cyclosporin A. To study whether the PTP is involved in in vivo toxicity, rats were fed a diet containing AAF (0.04%) for 2 weeks. After isolation of mitochondria, permeability transition was induced by high Ca2+ concentrations (150-400 microM) or phosphate plus Ca2+. Swelling was determined as maximal rate of absorption decrease at 540 nm (delta A/delta t). Surprisingly, delta A/delta t-values of mitochondria from AAF-fed rats were significantly lower (16.3 +/- 4.8 x 10(3)/min) than of mitochondria from control animals (32.7 +/- 4.1 x 10(3)/min; P < 0.02). In the presence of phosphate (15 mM), delta A/delta t-values of mitochondria from AAF-fed rats were even lower (10% of control). Moreover, the membrane potential which was dissipated rapidly by the PTP-inducer NOF (30 microM) at a Ca2+ concentration of 80 microM in mitochondria from control animals, remained constant in mitochondria of AAF-treated rats. We therefore propose that the regulation of the PTP is altered on chronic AAF-feeding. The increased resistance of mitochondria against permeability transition may alter the threshold for apoptosis and thus suppress apoptosis. We also discuss the role of epigenetic modifications in early stages of carcinogenesis.  相似文献   

2.
1. The direct effects of diazoxide on mitochondrial membrane potential, Ca2+ transport, oxygen consumption and ATP generation were investigated in mouse pancreatic B-cells and rat liver mitochondria. 2. Diazoxide, at concentrations commonly used to open adenosine 5'-triphosphate (ATP)-dependent K+-channels (K(ATP) channels) in pancreatic B-cells (100 to 1000 microM), decreased mitochondrial membrane potential in mouse intact perifused B-cells, as evidenced by an increase of rhodamine 123 fluorescence. This reversible decrease of membrane potential occurred at non-stimulating (5 mM) and stimulating (20 mM) glucose concentrations. 3. A decrease of mitochondrial membrane potential in perifused B-cells was also caused by pinacidil, but no effect could be seen with levcromakalim (500 microM each). 4. Measurements by a tetraphenylphosphonium-sensitive electrode of the membrane potential of rat isolated liver mitochondria confirmed that diazoxide decreased mitochondrial membrane potential by a direct action. Pretreatment with glibenclamide (2 microM) did not antagonize the effects of diazoxide. 5. In Fura 2-loaded B-cells perifused with the Ca2+ channel blocker, D 600, a moderate, reversible increase of intracellular Ca2+ concentration could be seen in response to 500 microM diazoxide. This intracellular Ca2+ mobilization may be due to mitochondrial Ca2+ release, since the reduction of membrane potential of isolated liver mitochondria by diazoxide was accompanied by an accelerated release of Ca2+ stored in the mitochondria. 6. In the presence of 500 microM diazoxide, ATP content of pancreatic islets incubated in 20 mM glucose for 30 min was significantly decreased by 29%. However, insulin secretion from mouse perifused islets induced by 40 mM K+ in the presence of 10 mM glucose was not inhibited by 500 microM diazoxide, suggesting that the energy-dependent processes of insulin secretion distal to Ca2+ influx were not affected by diazoxide at this concentration. 7. The effects of diazoxide on oxygen consumption and ATP production of liver mitochondria varied depending on the respiratory substrates (5 mM succinate, 10 mM alpha-ketoisocaproic acid, 2 mM tetramethyl phenylenediamine plus 5 mM ascorbic acid), indicating an inhibition of respiratory chain complex II. Pinacidil, but not levcromakalim, inhibited alpha-ketoisocaproic acid-fuelled ATP production. 8. In conclusion, diazoxide directly affects mitochondrial energy metabolism, which may be of relevance for stimulus-secretion coupling in pancreatic B-cells.  相似文献   

3.
The effect of Mg2+ on ATP-activated current in rat nodose ganglion neurons was investigated with the use of the whole cell patch-clamp technique. Mg2+ decreased the amplitude of ATP-activated current in a concentration-dependent manner over the concentration range of 0.25-8 mM, with a 50% inhibitory concentration value of 1.5 mM for current activated by 10 microM ATP. Mg2+ shifted the ATP concentration-response curve to the right in a parallel manner, increasing the 50% effective concentration value for ATP from 9.2 microM in the absence of added Mg2+ to 25 microM in the presence of 1 mM Mg2+. Mg2+ increased the deactivation rate of ATP-activated current without changing its activation rate. The observations are consistent with an action of Mg2+ to inhibit ATP-gated ion channel function by decreasing the affinity of the agonist binding site on these receptors.  相似文献   

4.
The permeability transition pore of rat liver mitochondria can be closed by chelating free Ca2+, with respect to the passage of large molecules such as mannitol and sucrose. However, an apparent H+-conducting substate remains open under these conditions, as indicated by the persistence of maximal O2 consumption rates and by the failure to recover a membrane potential. Agents which favor a closed pore, such as cyclosporin A, ADP, Mg2+, or bovine serum albumin, do not close the H+-conducting substate, but it closes spontaneously when respiration becomes limited by the availability of O2. Closure provoked by an O2 limitation requires free Mg2+ in the sub-micromolar concentration range and becomes less efficient with increasing time spent in the presence of free Ca2+. The H+-conducting substate is apparently regulated by the redox status of the electron transport chain, with a reduced form favoring closure. A physical association (or equivalence) between the pore and one of the respiratory chain complexes is supported. These characteristics suggest that the transition is irreversible in vivo, if it involves a small fraction of total mitochondria, and would lead to their elimination and/or replacement by the cell. The implications of this proposal are considered, as they relate to a possible role for the transition in cellular apoptosis and the elimination of mitochondria containing mutated DNA.  相似文献   

5.
Periodate-oxidized ADP (oADP)2 and periodate-oxidized ATP (oATP) stimulate the permeability transition in energized rat liver mitochondria measured as the Ca2+-efflux induced by Ca2+ and Pi. In the presence of Mg2+ and Pi, mitochondria lose intramitochondrial adenine nucleotides at a slow rate. oATP induces a strong decrease of the matrix adenine nucleotides which is inhibited by carboxyatractyloside. Under these conditions, Mg2+ prevents the opening of the permeability transition pore. EGTA prevents the Pi-induced slow efflux of adenine nucleotides, but is without effect on the oATP-induced strong decrease of adenine nucleotides. This oATP-induced strong adenine nucleotide efflux is inhibited by ADP. oATP reduces the increase of matrix adenine nucleotides occurring when the mitochondria are incubated with Mg2+ and ATP. This effect of oATP is also prevented by carboxyatractyloside. oATP is not taken up by the mitochondria. It is suggested that oATP induces a strong efflux of matrix adenine nucleotides by the interaction with the ADP/ATP carrier from the cytosolic side. The induction of the mitochondrial permeability transition by oADP and oATP is attributed to two mechanisms-a strong decrease in the intramitochondrial adenine nucleotide content, especially that of ADP, and a stabilization of the c-conformation of the ADP/ATP carrier.  相似文献   

6.
Ion permeability of internal membrane and a respiration in isolated rat liver mitochondria, further related to as "sodium ones", were studied following replacement of K+ ions for Na+ ones in the mitochondrial matrix. As compared with the control ("potassium mitochondria"), state 4 respiration in the sodium mitochondria, energized by succinate, was shown to be enhanced in KCl or sucrose media. Oxygen consumption rates in the sodium mitochondria, being in state 3 or stimulated by 2,4-dinitrophenol, were lower than rates for the control mitochondria. This effect was much pronounced in the sucrose medium. The coefficients, characterizing the distribution of 137Cs between mitochondria and the medium, were lower for the sodium mitochondria than for the control in the presence of 2.5 mM succinate and 10(-8) M valinomycin. In comparison with the control, a more extensive swelling for the sodium mitochondria was found, first, in the medium containing 25 mM K-acetate and 100 mM sucrose for succinate-energized mitochondria, and second, in the medium containing 125 mM NH4NO3 without mitochondrial energization. Changes disclosed in respiration, swelling and coefficients of 137Cs distribution for the sodium mitochondria are supposed to be caused by non-uniform effects of Na+ and K+ ions on the water structure of mitochondrial matrix, ion permeability of internal membrane, and the activity in oxidative phosphorylation enzymes.  相似文献   

7.
We investigated the effects of cytosolic Mg2+ on ryanodine receptor Ca2+ release channel (RyR) of bovine cardiac sarcoplasmic reticulum incorporated into planar lipid bilayers recording single channel activities. Channels were activated by > or = 0.1 microM Ca2+ in the cis solution. At constant Ca2+, application of Mg2+ (0.1-1 mM) to cis side decreased channel activity in a concentration-dependent manner. A half maximal blocking concentration (Kd) was 35 microM and a complete block was obtained at 1 mM. In the presence of 1 mM free Mg2+ in cis solution, the relation between the channel open probability (Po) and concentration of free Ca2+ in cis solution ([Ca2+]cis) shifted to the right, indicating the competition of Mg2+ and Ca2+. Blocking effects of Mg2+ on RyR were antagonized by increasing [Ca2+]cis > or = 0.1 mM. In the presence of 1 m Mg2+ and 1 mM Ca2+ in cis solution, the channel conductance was markedly depressed to approximately 400 pS (n = 7) from 603 +/- 40 pS (mean +/- S.D., n = 22) in the absence of Mg2+, indicating the flickering block. These results show that Mg2+ causes a direct inhibition of RyR in cardiac SR and this inhibition may be mediated through two different mechanisms. A competition of Mg2+ and Ca2+ at a Ca2+ sensitive site on the RyR and a flickery block of the open channel by Mg2+.  相似文献   

8.
Outward currents through the inward rectifier K+ channel contribute to repolarization of the cardiac action potential. The properties of the IRK1 channel expressed in murine fibroblast (L) cells closely resemble those of the native cardiac inward rectifier. In this study, we added Mg2+ (0.44-1.1 mM) or putrescine (approximately 0.4 mM) to the intracellular milieu where endogenous polyamines remained, and then examined outward IRK1 currents using the whole-cell patch-clamp method at 5.4 mM external K+. Without internal Mg2+, small outward currents flowed only at potentials between -80 (the reversal potential) and approximately -40 mV during voltage steps applied from -110 mV. The strong inward rectification was mainly caused by the closed state of the activation gating, which was recently reinterpreted as the endogenous-spermine blocked state. With internal Mg2+, small outward currents flowed over a wider range of potentials during the voltage steps. The outward currents at potentials between -40 and 0 mV were concurrent with the contribution of Mg2+ to blocking channels at these potentials, judging from instantaneous inward currents in the following hyperpolarization. Furthermore, when the membrane was repolarized to -50 mV after short depolarizing steps (> 0 mV), a transient increase appeared in outward currents at -50 mV. Since the peak amplitude depended on the fraction of Mg(2+)-blocked channels in the preceding depolarization, the transient increase was attributed to the relief of Mg2+ block, followed by a re-block of channels by spermine. Shift in the holding potential (-110 to -80 mV), or prolongation of depolarization, increased the number of spermine-blocked channels and decreased that of Mg(2+)-blocked channels in depolarization, which in turn decreased outward currents in the subsequent repolarization. Putrescine caused the same effects as Mg2+. When both spermine (1 microM, an estimated free spermine level during whole-cell recordings) and putrescine (300 microM) were applied to the inside-out patch membrane, the findings in whole-cell IRK1 were reproduced. Our study indicates that blockage of IRK1 by molecules with distinct affinities, spermine and Mg2+ (putrescine), elicits a transient increase in the outward IRK1, which may contribute to repolarization of the cardiac action potential.  相似文献   

9.
Prolonged heart ischaemia causes an inhibition of oxidative phosphorylation and an increase of Ca2+ in mitochondria. We investigated whether elevated Ca2+ induces changes in the oxidative phosphorylation system relevant to ischaemic damage, and whether Ca2+ and other inducers of mitochondrial permeability transition cause the release of cytochrome c from isolated heart mitochondria. We found that 5 microM free Ca2+ induced changes in oxidative phosphorylation system similar to ischaemic damage: increase in the proton leak and inhibition of the substrate oxidation system related to the release of cytochrome c from mitochondria. The phosphorylating system was not directly affected by high Ca2+ and ischaemia. The release of cytochrome c from mitochondria was caused by Ca2+ and 0.175-0.9 mM peroxynitrite but not by NO, and was prevented by cyclosporin A. Adenylate kinase and creatine kinase were also released after incubation of mitochondria with Ca2+, however, the activity of citrate synthase in the incubation medium with high and low Ca2+ did not change. The data suggest that release of cytochrome c and other proteins of intermembrane space may be due to the opening of the mitochondrial permeability transition pore, and may be partially responsible for inhibition of mitochondrial respiration induced by ischaemia, high calcium, and oxidants.  相似文献   

10.
The influence of myoplasmic Mg2+ (0.05-10 mM) on Ca2+ accumulation (net Ca2+ flux) and Ca2+ uptake (pump-driven Ca2+ influx) by the intact sarcoplasmic reticulum (SR) was studied in skinned fibres from the toad iliofibularis muscle (twitch portion), rat extensor digitorum longus (EDL) muscle (fast twitch), rat soleus muscle (slow twitch) and rat cardiac trabeculae. Ca2+ accumulation was optimal between 1 and 3 mM Mg2+ in toad fibres and reached a plateau between 1 and 10 mM Mg2+ in the rat EDL fibres and between 3 and 10 mM Mg2+ in the rat cardiac fibres. In soleus fibres, optimal Ca2+ accumulation occurred at 10 mM Mg2+. The same trend was obtained with all preparations at 0.3 and 1 microM Ca2+. Experiments with 2,5-di-(tert-butyl)-1,4-benzohydroquinone, a specific inhibitor of the Ca2+ pump, revealed a marked Ca2+ efflux from the SR of toad iliofibularis fibres in the presence of 0.2 microM Ca2+ and 1 mM Mg2+. Further experiments indicated that the SR Ca2+ leak could be blocked by 10 microM ruthenium red without affecting the SR Ca2+ pump and this allowed separation between SR Ca2+ uptake and SR Ca2+ accumulation. At 0.3 microM Ca2+, Ca2+ uptake was optimal with 1 mM Mg2+ in the toad iliofibularis and rat EDL fibres and between 1 and 10 mM Mg2+ in the rat soleus and trabeculae preparations. At higher [Ca2+] (1 microM), Ca2+ uptake was optimal with 1 mM Mg2+ in the iliofibularis fibres and between 1 and 3 mM Mg2+ in the EDL fibres.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Regulation of cellular Mg2+ by S. cerevisiae was investigated. The minimal concentration of Mg2+ that results in optimal growth of S. cerevisiae is about 30 microM and a half-maximum growth rate is attained at about 5 microM Mg2+. Since the plasma membrane has an electrical potential greater than 100 mV, passive equilibration of Mg2+ across the plasma membrane would provide sufficient cytosolic Mg2+ (0.1-1 mM). The total cellular Mg2+ of cells grown in synthetic medium containing 1 mM Mg2+ is about 400 nmol/mg protein, most of which is bound to polyphosphate, nucleic acids, and ATP. Total cellular Mg2+ decreases to about 80 nmol/mg protein as the Mg2+ in synthetic growth medium is reduced to 0.02 mM, but remains relatively constant in growth medium containing 1 to 100 mM Mg2+. Cells shifted into Mg(2+)-free medium continue to grow by utilizing the vacuolar Mg2+ stores. Mg(2+)-starved cells replenish vacuolar Mg2+ stores with a halftime of 30 min. following the addition of 1 mM Mg2+ to the growth medium. The data indicate that cytosolic Mg2+ is maintained by the regulation of Mg2+ fluxes across both the vacuolar and plasma membranes.  相似文献   

12.
In the present study we investigated the influence of several nonsteroidal anti-inflammatory drugs on calcium efflux in isolated rat renal cortex mitochondria in order to assess their potential to disrupt cell calcium homeostasis, as well as aspects of the mechanisms associated with oxidation of mitochondrial pyridine nucleotides (NAD(P)H) and with inhibition of the process by cyclosporin A (CsA). Calcium efflux was estimated with arsenazo III as an indicator and the redox state of NAD(P)H was monitored fluorimetrically at the 366/450 nm excitation/emission wavelength pair. Dipyrone, paracetamol and ibuprofen did not induce calcium efflux even at 1 mM, piroxicam and salicylate were poor inducers, while diclofenac sodium and mefenamic acid were potent inducers releasing calcium even at 20 microM and 10 microM, respectively. In the presence of 10 microM calcium, CsA had no appreciable effect while in the presence of 30 microM calcium it delayed calcium efflux. Oxidation of mitochondrial NAD(P)H, concomitant with calcium efflux and inhibited by CsA, was observed only in the presence of 30 microM calcium. The results suggest that diclofenac sodium and mefenamic acid induce calcium efflux in mitochondria through both a mechanism intrinsic to the mitochondrial membrane permeability transition and a mechanism including the electroneutral Ca2+/nH+ porter.  相似文献   

13.
Oxidation of added NADH by rat liver mitochondria has been studied. It is found that exogenous NADH, when oxidized by rat liver mitochondria in sucrose hypotonic medium supplemented with Mg2+ and EGTA, generates a membrane potential (delta psi) even in the absence of added cytochrome c. ADP and phosphate decrease delta psi, the effect being reversed by oligomycin. Rotenone and myxothiazol do not inhibit delta psi generated by oxidation of exogenous NADH. Added cytochrome c increases the rate of the exogenous NADH oxidation and coupled delta psi formation. In sucrose isotonic medium, or in hypotonic medium without Mg2+, exogenous NADH fails to stimulate respiration and to form a membrane potential. In the presence of Mg2+, exogenous NADH appears to be effective in delta psi generation in isotonic sucrose medium if mitochondria were treated with digitonin. In isotonic KCl without Mg2+, oxidation of exogenous NADH is coupled to the delta psi formation and MgCl2 addition before mitochondria prevents this effect. In hypotonic (but not in isotonic) sucrose medium, Mg2+ makes a portion of the cytochrome c pool reducible by exogenous NADH or ascorbate. It is assumed that (i) hypotonic treatment or digitonin causes disruption of the outer mitochondrial membrane, and, as a consequence, desorption of the membrane-bound cytochrome c in a Mg2+-dependent fashion; (ii) incubation in isotonic KCI without Mg2+ results in swelling of mitochondrial matrix, disruption of the outer membrane and cytochrome c desorption whereas Mg2+ lowers the K+ permeability of the inner membrane and, hence, prevents swelling; (iii) desorbed cytochrome c is reduced by added NADH via NADH-cytochrome b5 reductase and cytochrome b5 or by ascorbate and is oxidized by cytochrome oxidase. The role of desorbed cytochrome c in oxidation of superoxide and cytoplasmic NADH as well as possible relations of these events to apoptosis are discussed.  相似文献   

14.
Energy-linked respiration causes a net movement of Mg2+ between rat heart mitochondria and the ambient medium. When the extramitochondrial concontration of Mg2+ is less that about 2.5 mM the net movement of Mg2+ constitutes an efflux, whereas a net influx of Mg2+ occurs when the external concentration of Mg2+ is greater than this. Both the efflux and the influx are induced to only a very small degree by externally added ATP. Evidence suggests that Pi may be required for the respiration-induced efflux of Mg2+.  相似文献   

15.
The aim of the present study was to investigate if the plant alkaloid, mesaconitine, which has been reported to have antinociceptive effects via stimulation of the noradrenergic system, inhibits epileptiform field potentials. The experiments were performed as extracellular recordings on rat hippocampal slices. Epileptiform activity was induced by omission of Mg2+ from the bathing medium or by addition of bicuculline and stimulus-evoked population bursts were recorded in the CA1 region. Spontaneous epileptiform activity was elicited by perfusing a nominally Mg2+-free bathing medium with high K+ concentration (5 mM). Both stimulus-triggered and spontaneous epileptiform activity was attenuated in a concentration-dependent manner by mesaconitine (30 nM-1 microM). The inhibitory effect was rather variable in appearance when lower concentrations (30 and 100 nM) of mesaconitine were applied. Pretreatment of the slices with the alpha-adrenoceptor antagonist yohimbine (1 microM) prevented the effect of mesaconitine. It is concluded that the inhibitory action of mesaconitine at low concentration is mediated via alpha-adrenoceptors.  相似文献   

16.
The effect of varying the Mg2+ concentration on the 2-oxoglutarate dehydrogenase (2-OGDH) activity and the rate of oxidative phosphorylation of rat heart mitochondria was studied. The ionophore A23187 was used to modify the mitochondrial free Mg2+ concentration. Half-maximal stimulation (K0.5) of ATP synthesis by Mg2+ was obtained with 0.13 +/- 0.02 mM (n = 7) with succinate (+rotenone) and 0.48 +/- 0.13 mM (n = 6) with 2-oxoglutarate (2-OG) as substrates. Similar K0.5 values were found for NAD(P)H formation, generation of membrane potential, and state 4 respiration with 2-OG. In the presence of ADP, an increase in Pi concentration promoted a decrease in the K0.5 values of ATP synthesis, membrane potential formation and state 4 respiration for Mg2+ with 2-OG, but not with succinate. These results indicate that 2-OGDH is the main step of oxidative phosphorylation modulated by Mg2+ when 2-OG is the oxidizable substrate; with succinate, the ATP synthase is the Mg2+-sensitive step. Replacement of Pi by acetate, which promotes changes on intramitochondrial pH abolished Mg2+ activation of 2-OGDH. Thus, the modulation of the 2-OGDH activity by Mg2+ has an essential requirement for Pi (and ADP) in intact mitochondria which is not associated to variations in matrix pH.  相似文献   

17.
The effect of the herbicide 4,6-dinitro-o-cresol (DNOC), a structural analogue of the classical protonophore 2,4-dinitrophenol, on the bioenergetics and inner membrane permeability of isolated rat liver mitochondria was studied. We observed that DNOC (10-50 microM) acts as a classical uncoupler of oxidative phosphorylation in rat liver mitochondria, promoting both an increase in succinate-supported mitochondrial respiration in the presence or absence of ADP and a decrease in transmembrane potential. The protonophoric activity of DNOC was evidenced by the induction of mitochondrial swelling in hyposmotic K(+)-acetate medium, in the presence of valinomycin. At higher concentrations (> 50 microM), DNOC also induces an inhibition of succinate-supported respiration, and a decrease in the activity of the succinate dehydrogenase can be observed. The addition of uncoupling concentrations of DNOC to Ca(2+)-loaded mitochondria treated with Ruthenium Red results in non-specific membrane permeabilization, as evidenced by mitochondrial swelling in isosmotic sucrose medium. Cyclosporin A, which inhibits mitochondrial permeability transition, prevented DNOC-induced mitochondrial swelling in the presence of Ca2+, which was accompanied by a decrease in mitochondrial membrane protein thiol content, owing to protein thiol oxidation. Catalase partially inhibits mitochondrial swelling and protein thiol oxidation, indicating the participation of mitochondrial-generated reactive oxygen species in this process. It is concluded that DNOC is a potent potent protonophore acting as a classical uncoupler of oxidative phosphorylation in rat liver mitochondria by dissipating the proton electrochemical gradient. Treatment of Ca(2+)-loaded mitochondria with uncoupling concentrations of DNOC results in mitochondrial permeability transition, associated with membrane protein thiol oxidation by reactive oxygen species.  相似文献   

18.
Generally most intracellular Ca2+ is stored in the endoplasmic reticulum (ER) and mitochondria. Recently a mitochondrial Ca(2+)-induced Ca2+ release (mCICR) mechanism, unconnected with ryanodine receptors (RyR's), has been shown in tumour cells. The existence of a mitochondrial Ca2+ release mechanism in BAE cells was investigated using saponin-permeabilised BAE cells. When buffered intracellular solution were 'stepped' from 10 nM to 10 microM free Ca2+, the mitochondrial inhibitors CN (2 mM), FCCP (1 microM), and RR (20 microM) significantly reduced total CICR by approximately 25%. The ER Ca(2+)-ATPase inhibitor thapsigargin (100 nM) had no effect. Furthermore, cyclosporin A (200 nM), an inhibitor of the mitochondrial permeability transition pore (PTP), abolished total CICR. Therefore, the novel ryanodine-caffeine insensitive CICR mechanism previously reported in BAE cells involves mitochondrial Ca2 release. It is proposed that in BAE cells, mCICR occurs via the mitochondrial PTP and may be physiologically important in endothelial cell Ca2+ signalling.  相似文献   

19.
The fluorescent probe furaptra shows increases and decreases in the concentration of free magnesium ion, [Mg2+], in the mitochondrial matrix with changes in total Mg2+ and ligand availability. The factors involved in the calibration of these fluorescence changes in terms of absolute [Mg2+] have been investigated. The affinity of furaptra for Mg2+ is highly dependent on both temperature and ionic strength. The Kd for Mg-furaptra in solution in 100 mM KCl was found to be 2.1 +/- 0.1 mM at 25 degrees C. The use of this Kd to calculate matrix [Mg2+] is more reliable than in situ Kd measurements because ionophores, such as BrA23187 and ionomycin, do not equilibrate external Mg2+ with the matrix in an acceptable way. Furaptra is present at high concentrations (up to 500 microM) in the matrix when introduced by hydrolysis of the acetoxymethyl ester. However, absorbance spectra of aqueous solutions show no evidence of dimerization of the probe or other changes in properties at these concentrations. Fluorescence intensity at 340 nmex is strongly attenuated for matrix-sequestered furaptra, mag-fura-5, and mag-indo-1. This appears to result in part from preferential binding of the Mg-probe to mitochondrial proteins. The fluorescence of uncomplexed furaptra at 375-380 nmex seems unaffected by protein binding, however, and changes in intensity in this region of the spectrum can be used in conjunction with the Kd found in aqueous solution to estimate matrix [Mg2+]. The presence of secondary equilibria, such as protein binding, and possible changes in ionic strength may undermine exact quantitation by this method. However, values for matrix [Mg2+] obtained in this way (0.5 to 0.7 mM) correspond well to estimates by other available methods and each of these methods suffers from comparable uncertainties.  相似文献   

20.
Both glutamate and reactive oxygen species have been implicated in excitotoxic neuronal injury, and mitochondria may play a key role in the mediation of this process. In this study, we examined whether glutamate-receptor stimulation and oxidative stress interact to affect the mitochondrial membrane potential (delta psi). We measured delta psi in rat forebrain neurons with the ratiometric fluorescent dye JC-1 by using laser scanning confocal imaging. Intracellular oxidant levels were measured by using the oxidation-sensitive dyes 2',7'-dichlorodihydrofluorescein (DCFH2) and dihydroethidium (DHE). Application of hydrogen peroxide (0.3-3 mM) or 1 mM xanthine/0.06 U/ml xanthine oxidase decreased delta psi in a way that was independent of the presence of extracellular Ca2+ and was not affected by the addition of cyclosporin A, suggesting the presence of either a cyclosporin A-insensitive form of permeability transition, or a separate mechanism. tert-Butylhydroperoxide (730 microM) had less of an effect on delta psi than hydrogen peroxide despite similar effects on intracellular DCFH2 or DHE oxidation. Hydrogen peroxide-, tert-butylhydroperoxide-, and superoxide-enhanced glutamate, but not kainate, induced decreases in delta psi. The combined effect of peroxide or superoxide plus glutamate was Ca2+ dependent and was partially inhibited by cyclosporin A. These results suggest that oxidants and glutamate depolarize mitochondria by different mechanisms, and that oxidative stress may enhance glutamate-mediated mitochondrial depolarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号