首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
利用射频磁控溅射法在Si(111)衬底上先溅射ZnO缓冲层,再溅射Ga2O3薄膜,然后在开管炉中不同温度下通氨气进行氨化反应生长GaN薄膜.分析结果表明,利用该方法制备的GaN薄膜是六角纤锌矿多晶结构,并且随着氨化温度的升高,GaN薄膜向棒状和线状形态转变.同时分析了ZnO缓冲层对形成GaN纳米结构的影响.  相似文献   

2.
利用射频磁控溅射法在Si(111)衬底上先溅射ZnO缓冲层,再溅射Ga2O3薄膜,然后在开管炉中分别以850℃,900℃,950℃和1 000℃等温度及常压下通氨气进行氨化,反应生长GaN薄膜.利用该方法制备的GaN薄膜是沿c轴方向择优生长的六角纤锌矿多晶结构,并且随着氨化温度的升高,GaN向棒状和线状形态生长.  相似文献   

3.
研究了Ga2O3/In2O3 膜反应自组装制备GaN薄膜,再将Ga2O3/In2O3膜在高纯氨气气氛中氨化反应得到GaN薄膜,用X射线衍射 (XRD),傅里叶红外吸收(FTIR),扫描电镜(SEM)和透射电镜(TEM)对样品进行结构、形貌的分析.测试结果表明,用此方法得到了六方纤锌矿结构的GaN多晶膜,且900℃时成膜的质量最好.  相似文献   

4.
本文通过在ZnO/Si(111)衬底上,利用JCK-500A型射频磁控溅射系统溅射氧化镓靶得到氧化镓薄膜.然后将硅基Ga2O3置于管武石英炉中,在850℃的氨化温度下氨化15min后,成功制备出GaN薄膜,该薄膜由正六边形的晶粒组成.X射线衍射(XRD)表明GaN具有六方纤锌矿结构,晶格常数为a=0.318nm和c=0.518nm.X射线光电子能谱(XPS)的测试确定了样品中Ga-N键的形成,并且Ga和N的化学计量比为1:1.用扫描电镜(SEM)和原子力显微镜(AFM)观察发现,样品表面非常光滑和平整.透射电镜(TEM)表明薄膜由正六边形晶粒组成.选区电子衍射(SAED)进一步验证了GaN薄膜的六方纤锌矿结构.最后,简单地讨论了其生长机制.  相似文献   

5.
研究了Ga2O3/In 膜反应自组装制备GaN薄膜,再将Ga2O3/In膜在高纯氨气气氛中氨化反应得到GaN薄膜,用X射线衍射(XRD),傅里叶红外吸收(FTIR),扫描电镜(SEM),原子力显微镜(AFM),透射电镜(TEM)对样品进行结构,形貌的分析.测试结果表明:用此方法得到了六方纤锌矿结构的GaN多晶膜,且900℃时成膜的质量最好.  相似文献   

6.
为了制备高质量的GaN纳米结构,采用磁控溅射技术先在硅衬底上制备Ga2O3/V薄膜,然后在流动的氨气中进行氨化反应,成功制备出GaN纳米线.采用X射线衍射(XRD)、傅里叶红外吸收光谱(FTIR)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对样品进行分析.研究结果表明,采用此方法得到了六方纤锌矿结构的GaN纳米线,且900℃时制备的纳米线质量最好,直径在60nm左右,长度达到十几微米.  相似文献   

7.
采用射频磁控溅射技术先在硅衬底上制备Ga2O3/ Nb薄膜,然后在900℃时于流动的氨气中进行氨化制备GaN纳米线.用X射线衍射(XRD)、傅立叶红外吸收光谱(FTIR)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)详细分析了GaN纳米线的结构和形貌.结果表明:采用此方法得到的GaN纳米线为六方纤锌矿结构,其纳米线的直径大约在50~100nm之间,纳米线的长约几个微米.室温下以325nm波长的光激发样品表面,只显示出一个位于364.4nm的很强的紫外发光峰.最后,简单讨论了GaN纳米线的生长机制.  相似文献   

8.
利用射频磁控溅射法在Si(111)衬底上先溅射Mo中间层,再溅射Ga2O3薄膜,然后在氨气中退火合成了大量的一维棒状β-Ga2O3.X射线衍射、选区电子衍射和能量弥散谱的分析结果表明,制备的样品为β-Ga2O3.利用扫描电子显微镜和高分辨透射电子显微镜观察发现,合成的棒具有直而光滑的表面,其直径在70~200nm左右.室温光致发光谱显示出两个较强的蓝光发射.另外,简单讨论棒状β-Ga2O3的生长机制.  相似文献   

9.
利用磁控溅射技术在Si衬底上沉积Ga2O3/Co薄膜,然后在不同氨气流量下于950℃退火15min。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、傅立叶红外吸收(FTIR)光谱、高分辨透射电子显微镜(HRTEM)和光致发光谱(PL)对样品进行了分析表征。结果表明,氨气流量对GaN纳米线的生长及性能有很大影响。简单讨论了GaN纳米线的生长机理。  相似文献   

10.
采用磁控溅射技术先在硅衬底上制备Ga2O3/Ti薄膜,然后在950℃时于流动的氨气中进行氨化反应制备GaN薄膜.X射线衍射(XRD)、傅立叶红外吸收光谱(FTIR)、选区电子衍射(SAED)和高分辨透射电子显微镜(HRTEM)的结果表明采用此方法得到了六方纤锌矿结构的GaN单晶纳米线.通过扫描电镜(SEM)观察发现纳米线的形貌,纳米棒的尺寸在50~150nm之间.  相似文献   

11.
C-axis-oriented ZnO films were sputtered on Langasite substrate (LGS, La(3)Ga(5)SiO(14)). The crystalline structure of the films was determined by grazing incident angle X-ray diffraction, the surface microstructure of films was investigated by scanning electron microscopy and atomic force microscopy, the atom composition ratio O/Zn of films was determined by energy dispersive X-ray spectroscopy, and the resistivity of films was determined by the four-point probe instrument. The measurement results showed those films prepared were all polycrystalline hexagonal ZnO films. By analyzing the microstructure of the ZnO films, those prepared at the oxygen flow rate (O(2)/O(2)+Ar) of 20%, the RF power of 200 W, and the substrate temperature of 200 degrees C had the best performance: highly c-axis-oriented microstructures, dense surface morphology, and the atom composition ratio 1.02. The measured scattering parameters of the SAW device fabricated on the composite substrate (ZnO/LGS) with film thickness 1.76 microm showed an average shifted velocity around 2741 m/s at 57.1 MHz and a electromagnetic coupling coefficient greater than 1%.  相似文献   

12.
The GaN nanowires were successfully synthesized on Si(111) substrates by ammoniating the Ga2O3/ZnO films at 900 °C. The structure and morphology of the as-prepared GaN nanowires were studied by X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), scanning electron microscopy (SEM) and field-emission transmission electron microscopy (FETEM). The results show that the single-crystal GaN nanowires have a hexagonal wurtzite structure with lengths of about several micrometers and diameters ranging from 30 nm to 120 nm, which are conducive to the application of nanodevices. Finally, the growth mechanism is also briefly discussed.  相似文献   

13.
Large-scale GaN nanowires were successfully synthesized through ammoniating Ga2O3/Pd films sputtered on the sapphire(001) substrates. X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, photoluminescence and Raman spectrum were used to characterize the specimens. The results demonstrate that nanowires are single crystal with hexagonal wurtzite structure and have good optical properties. Raman scattering appears broadened and asymmetric compared with those of bulk GaN due to its polycrystalline nature. In addition, the growth mechanism of GaN nanowires is briefly discussed.  相似文献   

14.
采用磁控溅射的方法在Si(111)衬底上溅射沉积Ga2O3/Cr膜,并通过氨化的方法在Si(111)衬底上成功合成了六方纤锌矿GaN纳米结构材料,研究了不同的氨化温度对合成GaN纳米材料的影响.采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、透射电子显微镜(TEM)、高分辨透射电子显微镜(HR-TEM)、傅里叶红外吸收(FTIR)光谱来检测样品的形态,结构和成分,并且讨论了GaN纳米结构的生长机理.研究结果表明,在Cr催化合成GaN纳米结构的过程中,氨化温度对其有重要影响,最佳温度是950℃.  相似文献   

15.
A novel rare earth metal seed was employed as the catalyst for the growth of GaN nanorods. Large-scale GaN nanorods were synthesized successfully through ammoniating Ga2O3/Tb films sputtered on Si(1 1 1) substrates. Scanning electron microscopy, X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy were used to characterize the structure, morphology, and composition of the samples. The results demonstrate that the nanorods are high-quality single-crystal GaN with hexagonal wurtzite structure. The growth mechanism of GaN nanorods is also discussed.  相似文献   

16.
以氧化镓为镓源, 用溶胶-凝胶和高温氨化二步法, 在Si(111)衬底上制备出GaN薄膜. X射线衍射(XRD)分析表明制备的GaN薄膜是六角纤锌矿结构; 扫描电子显微镜(SEM)图片显示GaN晶粒的尺寸<100nm; 薄膜的红外光谱(FTIR)中有GaN的E1 (TO)声子模式. 用密度泛函理论(DFT)计算了氮化镓小团簇的振动频率. 结果表明: 富镓氮化镓团簇的振动频率在六方晶系纤锌矿结构GaN的光学声子峰值附近; 富氮氮化镓团簇中的N--N键的振动频率为2200cm-1. 用氮化镓团簇的频谱对所制薄膜的红外光谱作了进一步分析.  相似文献   

17.
GaN nanostructured materials have been obtained on Si(111) substrates by ammoniating the Ga2O3/ZnO films at different temperature in a quartz tube. X-ray diffraction (XRD), Scanning electron microscope (SEM), and photoluminescence (PL) are used to analyze the structure, morphology and optical properties of GaN nanostructured films. The results show that their properties are investigated particularly as a function of ammoniating temperature. The optimally ammoniating temperature of Ga2O3 layer is 950 °C for the growth of GaN nanorods. These nanorods are pure hexagonal GaN wurtzite structure with lengths of about several micrometers and diameters of about 200 nm, which is conducive to the application of nanodevices. Finally, the growth mechanism is also briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号