首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recommender systems are one of the most im- portant technologies in e-commerce to help users filter out the overload of information. However, current mainstream recommendation algorithms, such as the collaborative filter- ing CF family, have problems ness. These problems hinder such as scalability and sparse- further developments of rec- ommender systems. We propose a new recommendation al- gorithm based on item quality and user rating preferences, which can significantly decrease the computing complexity. Besides, it is interpretable and works better when the data is sparse. Through extensive experiments on three benchmark data sets, we show that our algorithm achieves higher accu- racy in rating prediction compared with the traditional ap- proaches. Furthermore, the results also demonstrate that the problem of rating prediction depends strongly on item quality and user rating preferences, thus opens new paths for further study.  相似文献   

2.
协同过滤推荐算法是目前应用最为广泛的个性化推荐方法之一,但传统的推荐算法在计算目标用户邻居集时只考虑用户项目评分矩阵中的具体数值,没有考虑用户偏好以及用户评分与项目属性之间的关系,推荐精度也有待进一步提高。针对这一问题,提出了一种基于用户偏好和项目属性的协同过滤推荐算法(UPPPCF)。本算法在传统的用户项目评分矩阵基础上综合考虑用户偏好以及项目属性,把评分矩阵转变成基于用户偏好的用户项目属性评分矩阵,然后根据这一评分矩阵来计算目标用户的最近邻居集,克服了传统相似性计算方法只依靠用户评分值的不足,同时本文对预测值判定给出了一种有效的度量方法。在 MovieLen 数据集上的实验结果表明,本文提出的UPPPCF算法能够有效弥补传统协同过滤算法中的不足,而且在推荐精度上有了明显的提高。  相似文献   

3.
提出了一种基于用户偏好的协同过滤推荐算法.首先根据不同用户兴趣序列的最长公共子序列的长度和公共子序列的个数计算用户相似度,然后将该相似度和传统协同过滤推荐算法得到的相似度进行加权混合计算,基于混合相似度进行项目推荐和预测目标用户对项目的可能评分.最后,通过比较三种推荐算法在三个数据集Ciao、Flixster和Movi...  相似文献   

4.
传统的个性化推荐算法普遍存在数据稀疏性问题,影响了推荐的准确度。Slope one算法具有简单、高效等特点,但该算法只是根据用户—项目评分矩阵进行数据分析,对所有用户采用一致性的权重进行计算,忽视了用户对项目类型的喜好程度。针对上述问题进行了研究,提出LR-Slope one算法。首先根据用户—项目评分矩阵和项目类型信息构建用户对项目类型的偏好矩阵;然后利用线性回归模型计算用户对每个类型的权重,采用随机梯度下降算法优化权重;最后结合Slope one算法预测评分,填充评分矩阵,提高推荐的质量。实验结果表明,所提算法提高了推荐的精度,有效缓解了稀疏性问题。  相似文献   

5.
推荐系统是从大量信息中主动查找用户可能感兴趣的信息的工具.如何更好地贴近用户偏好,满足用户长期固有偏好的同时又能考虑到用户短期的兴趣焦点变化,是推荐系统长期研究的一个问题.此外,在对推荐系统进行设计时,为了提高推荐性能,除了专注于用户建模优化、推荐对象建模优化或推荐算法优化外,还需要将推荐系统作为一个整体进行系统性的研究,关注如系统流畅性、可伸缩能力等.针对这些问题,本文设计了一种实时推荐与离线推荐相结合的推荐系统,提出了采用待推荐池的方法保证系统的流畅性;在分析实时数据与历史数据的基础上,提供实时推荐与离线推荐,在贴合用户长期固有偏好的同时也能适应用户短时间内的兴趣焦点变化;采用控制模块对不同推荐结果数据进行控制调节,提高系统的可伸缩能力.基于该推荐系统,本文进行了对于微信文章的推荐实验,通过对待推荐池内数据进行分析来评价推荐效果,结果表明,推荐数据能够逐步贴近用户兴趣偏好.  相似文献   

6.
ABSTRACT

Twitter has become a popular microblogging service that allows millions of active users share news, emergent social events, personal opinions, etc. That leads to a large amount of data producing every day and the problem of managing tweets becomes extremely difficult. To categorize the tweets and make easily in searching, the users can use the hashtags embedding in their tweets. However, valid hashtags are not restricted which lead to a very heterogeneous set of hashtags created on Twitter, increasing the difficulty of tweet categorization. In this paper, we propose a hashtag recommendation method based on analyzing the content of tweets, user characteristics, and currently popular hashtags on Twitter. The proposed method uses personal profiles of the users to discover the relevant hashtags. First, a combination of tweet contents and user characteristics is used to find the top-k similar tweets. We exploit the content of historical tweets, used hashtags, and the social interaction to build the user profiles. The user characteristics can help to find the close users and enhance the accuracy of finding the similar tweets to extract the hashtag candidates. Then a set of hashtag candidates is ranked based on their popularity in long and short periods. The experiments on tweet data showed that the proposed method significantly improves the performance of hashtag recommendation systems.  相似文献   

7.
在缺乏用户交互互补项目方面数据的情况下,将用户对项目的偏好融合到只考虑项目关系的互补项目推荐中,提高推荐模型的性能。提出一种基于知识图谱的互补项目推荐方法,在用户历史交互项目集中推测用户交互的互补项目,基于知识图谱提取用户对互补项目的偏好,利用图像与文本学习项目之间的互补关系,最后基于神经网络实现二者的共同学习。提出的方法在Amazon数据集上与次优的基线方法相比,ACC提升了7%,precision提升了3%,这说明提出的方法性能优异。该算法共同学习用户对项目的偏好与项目之间的互补关系,提升了推荐性能。  相似文献   

8.
基于标签、得分和偏好时效性的项目推荐方法   总被引:1,自引:1,他引:0       下载免费PDF全文
网络信息的爆炸式增长使得推荐系统成为一项研究的热点。现存的推荐系统在实际运营中存在各自的缺陷。在web2.0环境下,标签、项目得分以及用户标注项目的时间均包含暗示用户偏好的重要信息,这些信息对提高推荐系统准确度是十分重要的。在借鉴协同过滤思想的基础上,提出综合考虑标签、项目得分和用户偏好时效性的项目推荐模型,并对此模型的体系结构及应用前景进行了分析。  相似文献   

9.
针对传统的协同过滤算法中数据稀疏性所导致的推荐系统推荐质量不高的问题,文章结合用户和产品背景信息,对其进行加权处理,提出了基于用户和产品信息加权的协同过滤算法.该方法首先计算基于用户属性的相似性和基于项目类别的相似性,然后将计算的结果作为加权值融合到传统的相似度计算中,弥补因为数据稀疏而造成不能准确地进行个性化推荐的不足,提供更多可参考数据进行精确推荐.实验结果表明,该算法能有效提高推荐质量,产生较好的推荐效果.  相似文献   

10.
随着人工智能和大数据技术的不断发展,对信息的获取方式也在发生着变化,消费者希望用最少的时间成本获取尽量多的商品信息。如何在产品的营销过程中实现对目标用户的精准定位,基于用户画像技术的推荐系统就是目前所采用的有效方法之一。本文对互联网环境下在产品的推广和营销过程中如何利用用户画像技术,有针对性地选择推荐系统算法进行了探讨和研究。  相似文献   

11.
为满足用户需求,以用户为中心,解决用户关注度不断变化、数据稀疏性、优化时间和空间效率等问题,提出基于用户关注度的个性化新闻推荐系统。推荐系统引入个人兴趣和场景兴趣来描述用户关注度,使用雅克比度量用户相似性,对相似度加权求和预测用户关注度,从而提供给用户经过排序的新闻推荐列表。实验结果表明,推荐系统有效地提高了推荐精准度和覆盖度,改善了系统可扩展性和自动更新能力,具有良好的推荐效果。  相似文献   

12.
针对现有的协同过滤推荐算法中存在评分数据稀疏和用户兴趣动态变化的问题,提出了融合时间加权信任与用户偏好的协同过滤算法.考虑到用户评分时间的不均匀,对时间权重进行改进,并将其融入到直接信任计算中,缓解用户兴趣动态变化的问题.通过信任传递得到的间接信任以及建立用户对项目标签的偏好矩阵得到用户之间的偏好相似度来缓解数据的稀疏...  相似文献   

13.
为更好地满足了推荐系统中用户个性化推荐的需求,提高推荐系统的性能。研究了用户兴趣模型,提出了一种用户兴趣模型自动更新的方法,在数据采集过程中,通过对隐性数据的采集,动态地更新用户模型;模型使用向量空间模型的表示方法。实验结果表明,新的模型提高了计算用户最近邻居的准确性,算法在不同推荐范围都用良好的表现,并具有很好的耐久性。  相似文献   

14.
为了准确检测协同过滤推荐系统中的用户概貌注入攻击,从攻击的目的性考虑,通过对攻击概貌中目标项目与填充项目之间的特征差异进行分析,提出一种项目评分背离度的计算方法;利用项目评分背离度来确定受攻击的目标项目,并在此基础上提出一种基于目标项目识别的用户概貌注入攻击检测算法.实验结果表明,该算法进一步提高了攻击检测的精度,确保了系统推荐的质量.  相似文献   

15.
个性化推荐系统是大数据时代信息过滤的有效手段,影响推荐系统预测准确性的主要原因之一是数据稀疏性。Slope One评分预测推荐算法采用简单的线性回归模型解决数据稀疏问题,具有易于实现、评分预测速度快的特点,但它在训练阶段生成项目之间评分差的时间和空间消耗大,训练阶段需离线进行。为解决以上问题,提出一种简化的Slope One算法——Simplified Slope One,以两项目历史平均分之差代替项目评分差,来降低算法的时间复杂度和空间复杂度,简化耗时最多的生成项目之间评分差的过程,以有效提高评分数据的利用率,对稀疏数据有更好的适应性。在Movielens数据集上利用按照时间戳排序后划分的测试集进行实验,结果表明Simplified Slope One算法对评分预测的准确性与原Slope One算法接近,但时间复杂度和空间复杂度均低于原Slope One算法,更适合在数据规模增长迅速的大型推荐系统中应用。  相似文献   

16.
随着海量移动数据的积累,下一个兴趣点推荐已成为基于位置的社交网络中的一项重要任务.目前,主流方法倾向于从用户近期的签到序列中捕捉局部动态偏好,但忽略了历史移动数据蕴含的全局静态信息,从而阻碍了对用户偏好的进一步挖掘,影响了推荐的准确性.为此,提出一种基于全局和局部特征融合的下一个兴趣点推荐方法.该方法利用签到序列中的顺序依赖和全局静态信息中用户与兴趣点之间、连续签到之间隐藏的关联关系建模用户移动行为.首先,引入两类全局静态信息,即User-POI关联路径和POI-POI关联路径,学习用户的全局静态偏好和连续签到之间的全局依赖关系.具体地,利用交互数据以及地理信息构建异构信息网络,设计关联关系表示学习方法,利用相关度引导的路径采样策略以及层级注意力机制获取全局静态特征.然后,基于两类全局静态特征更新签到序列中的兴趣点表示,并采用位置与时间间隔感知的自注意力机制来捕捉用户签到序列中签到之间的局部顺序依赖,进而评估用户访问兴趣点概率,实现下一个兴趣点推荐.最后,在两个真实数据集上进行了实验比较与分析,验证了所提方法能够有效提升下一个兴趣点推荐的准确性.此外,案例分析表明,建模显式路径有助于提...  相似文献   

17.
    
Abstract

This paper discusses the use of Petri net languages, particularly, its subclass “timed event graph” for modeling a public transport network. The behavior of the network is described by a particular algebraic structure called (max, +) algebra. We show that the modeling of such a network is possible under some hypotheses. We propose a Petri net tool with some conflicts to model this network without taking into account these assumptions. The behavior of this Petri net in (max, +) algebra is presented. An example is given to illustrate our results.  相似文献   

18.
针对传统的知识推荐算法存在用户冷启动和冷门物品推荐的问题,提出了一种基于三部图网络结构的知识推荐算法。在计算相似度时引入网络结构中的度,综合考虑项目的度和权值及标签的度和权值对推荐算法的影响。实验结果表明,该算法提高了推荐的个性化和多样性,有效地解决了用户冷启动和冷门物品推荐的问题,改善了推荐效果。  相似文献   

19.
为面向群体用户提供推荐,提高群体用户的信息搜索效率,提出了一种新颖的基于优化协同过滤与中位数加权平均的群推荐方法,综合考虑了项目的评分相似性与类型相似性,通过集成项目相似性与用户相似性预测出群体用户对项目的评分;在集结群体用户评分时,采用基于中位数的加权平均集结策略消除个别用户评分差异过大带来的影响,综合考虑群体用户在评分过程中的作用。通过预测项目评分实验与集结用户评分实验,结果表明,用新方法得到的准确率均高于常用的传统方法,从而表明该方法是有效的。  相似文献   

20.
基于项目分类的协同过滤改进算法*   总被引:1,自引:4,他引:1  
为了解决用户评分数据稀疏性和用户最近邻寻找的准确性问题,提出了一种基于项目分类的协同过滤推荐改进算法。该算法首先利用项目分类信息为类内未评分项目预测评分值;然后通过计算类内用户间的相似度得到目标用户的最近邻居;最后进行推荐。实验结果表明,该算法可以准确地获取用户兴趣最近邻,有效地解决数据稀疏性问题;同时,该算法还极大地提高了系统的工作效率及可扩展性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号