首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acid production and its relation to pH changes by commercial, direct-set frozen concentrated lactic starters in skim milk and 2:1 skim milk retentates were studied. Retentates resisted pH change below pH 5.2 despite the production of large amounts of lactic acid by starter bacteria. Control skim milk required 6 h at 32°C to attain pH 4.6, but skim milk retentates incubated similarly could not be fermented to this pH even after 8.5 h. Doubling the starter inoculum in the retentate led to pH 4.6 in 7.5 h. Direct-set starter DS1, with more bacteria numbers than direct-set starter DS2, fermented skim milk and 2:1 skim milk retentate more rapidly.  相似文献   

2.
Kefir starter culture was used for the production of beverages, and some chemical and microbiological parameter changes were determined during 24 h of fermentation and then after 2, 7, 14, 21 and 28 days of storage at 4 °C. Three different substrates (milk, whey and soya milk) were used as fermentation media for the kefir starter culture. After the fermentation, the carbohydrate content and pH decreased, but the dry matter and fat content of the beverages were not significantly different from their substrates. During storage, lactic acid bacteria in the beverages decreased, while yeasts increased and carbohydrate, ethanol and pH changed significantly in the three beverages.  相似文献   

3.
The ability of lactic acid bacterial starter cultures to produce gamma-aminobutyric acid (GABA) during sausage fermentation was studied. Among 305 strains of lactic acid bacteria isolated from kimchi samples, 11 strains were selected as starter candidates based on the following criteria: growth speed, pH lowering ability, and biogenic amine productivity including GABA-producing activity. During in vitro tests, the Y8 (Lactobacillus brevis), O52, and KA20 strains produced 39.00 ± 1.36, 49.73 ± 3.80, and 64.59 ± 0.61 mg/kg of GABA, respectively. Interestingly, although isolate Y8 showed low productivity in vitro, the GABA content it produced during in situ tests (61.30 ± 2.61 mg/kg) was similar to that produced by isolate PM3 (L. brevis) used as positive control (69.64 ± 2.20 mg/kg). Therefore, isolate Y8 was selected as the best functional starter culture for the production of fermented sausage because it exhibited rapid growth, safety, and abundant GABA productivity.  相似文献   

4.
该试验对乳酸菌发酵核桃粕乳的不同菌株进行筛选,通过pH值、酸度及感官评定分析,从9株乳酸菌中筛选出嗜酸乳杆菌(Lactobacillus acidophilus)和植物乳杆菌(Lactobacillus plantarum)两株优良菌种。研究两株乳酸菌的复配比例,并与传统发酵剂发酵的核桃粕乳进行品质对比。结果表明,以嗜酸乳杆菌:植物乳杆菌(1∶1)接种发酵后得到的发酵核桃粕发酵乳综合品质最佳,其感官评分90分,氨基酸态氮含量57.0 mg/L,活菌总数7.35×107 CFU/mL,经发酵后的营养价值明显优于传统发酵剂发酵的核桃粕乳。  相似文献   

5.
Cocoa bean fermentations controlled by means of starter cultures were introduced on several farms in two different cocoa-producing regions (West Africa and Southeast Asia). Two starter culture mixtures were tested, namely one composed of Saccharomyces cerevisiae H5S5K23, Lactobacillus fermentum 222, and Acetobacter pasteurianus 386B (three heaps and one box), and another composed of L. fermentum 222 and A. pasteurianus 386B (seven heaps and one box). In all starter culture-added cocoa bean fermentation processes, the inoculated starter culture species were able to outgrow the natural contamination of the cocoa pulp-bean mass and they prevailed during cocoa bean fermentation. The application of both added starter cultures resulted in fermented dry cocoa beans that gave concomitant milk and dark chocolates with a reliable flavour, independent of cocoa-producing region or fermentation method. The addition of the lactic acid bacterium (LAB)/acetic acid bacterium (AAB) starter culture to the fermenting cocoa pulp-bean mass accelerated the cocoa bean fermentation process regarding citric acid conversion and lactic acid production through carbohydrate fermentation. For the production of a standard bulk chocolate, the addition of a yeast/LAB/AAB starter culture was necessary. This enabled an enhanced and consistent ethanol production by yeasts for a successful starter culture-added cocoa bean fermentation process. This study showed possibilities for the use of starter cultures in cocoa bean fermentation processing to achieve a reliably improved fermentation of cocoa pulp-bean mass that can consistently produce high-quality fermented dry cocoa beans and flavourful chocolates produced thereof.  相似文献   

6.
According to the results obtained, three steps in Gergoush fermentation were identified. Step one is the primary starter preparation and comprises a 12-15 h propagation of the natural thermotolerant bacterial flora of the legume ingredient of Gergoush using the legume and boiled milk as a propagation medium. This primary starter is then used in step two to inoculate a wheat flour dough to produce the adapted starter in a 1-2-h fermentation time. The adapted starter is finally used in step three to raise the main Gergoush dough. In all of the three steps of Gergoush fermentation, three genera of bacteria dominated. They were tentatively identified as lactic acid bacteria, Bacillus spp. and Clostridium spp. Their counts reached a maximum in the primary starter stage of 2.2 x 10(7), 2.8 x 10(8) and 7.3 x 10(7) CFU/g, respectively. These bacteria produced lactic, acetic and butyric acids. The concentrations of the acids were maximum in the primary starter and reached values of 0.6%, 0.4% and 0.5%, respectively, and the pH decreased from 6.1 to 4.1. Baked Gergoush has a pH of about 5 and contains about 59% starch, 16% protein, 18% fat, 6.5% water and 0.5% ash.  相似文献   

7.
Lactic acid bacteria (LAB) are key for the fermentation of sourdoughs to improve the quality and nutritive value of bread. The aim of this study was to isolate the LAB starter for sourdough fermentation from Jeung-pyun, a Korean traditional rice cake. Among the twenty two LAB screened, five isolates were selected based on exo-polysaccharide production. Among them, three isolates showed cell growth greater than 8.5 Log CFU/g, maximum increase in the volume of dough, and dextran concentration up to 0.16%. During the sourdough fermentation, pH and total titratable acidity (TTA) were changed, as the three isolates synthesized lactic acid and acetic acid with fermentation quotients less than 2.0. They were identified as Leuconostoc lactis EFEL005, Lactobacillus brevis EFEL004, and Le. citreum EFEL006. They displayed good fermentation properties (growth, dextran production, pH, and TTA) in dough and they are regarded as potential starters to be used in sourdough fermentation.  相似文献   

8.
The aim of this work was to evaluate the performance of spontaneous and Lactobacillus cultures in Spanish style fermentation of olive fruits. A fermentation with Lactobacillus plantarum ATCC 8014 was carried out for comparison. Fermentation was performed at room temperature during 120 days in two different concentrations of NaCl (2.4–13.6 % w/v) and sucrose (0–0.82 % w/v) in the brines. The pH, chlorides, lactic acid, reducing sugar and lactic bacteria in selective medium were investigated during the olive fermentation. After 120 days of fermentation, the formulation with 12 % NaCl in the brine hampered the growth of lactic bacteria, avoiding the consumption of reducing sugars. However, low salt concentrations (≤4 %) promoted a decrease in pH, an increase of the lactic acid and the growth of lactic bacteria, providing best environmentally suitable for the fermentation process. Whereas using concentrations of 12 % NaCl and 0.7 % sucrose showed better chemical conditions, ensuring the safety of the product produced. Multivariate analysis showed that the olives with both cultures were in close relation to lactic acid and reducing sugar and different from lactic bacteria.  相似文献   

9.
Yoghurts were made from pasteurised and homogenised goat milk (2.5% protein), goat milk fortified with a milk protein isolate (5% protein) and cow milk (3% protein), by acidification with a starter culture at 43 °C until a pH of 4.6 was reached. The rheological and textural properties of gels and yoghurts were analysed using dynamic low amplitude oscillatory rheology and back extrusion texture analysis. Gelation and fermentation times of goat milk were longer, while gelation pH, storage moduli (G′) and yield stress values were lower, compared with those of cow milk. Textural properties of goat milk yoghurts such as firmness, consistency, cohesiveness and viscosity index were very poor. Consequently, the products could not be classified as set type yoghurts. Fortification of goat milk with a milk protein isolate contributed to a significant improvement of the rheological and textural properties of yoghurt.  相似文献   

10.
The occurrence and persistence of diacetyl in samples of unfermented raw and processed milk have been investigated; in addition, samples of milk fermented by different lactic acid bacteria have also been analysed. Diacetyl was determined by using a simplified gas chromatographic method in which acetone was the extracting agent. Diacetyl in unfermented raw milk of cow, buffalo, goat and sheep was found to be 45.1, 65.2, 42.8 and 41.2 mg kg?1, respectively. The pre-fermentative diacetyl in milk was highly stable, and its initial value irrelevantly changed after the milk had been stored at 20 °C for 24 h or freeze-dried for 8 h and finally, having been thermically treated at 80 °C for 30 min. Significant amounts of diacetyl were detected also in all the processed milks. At 26 °C growth temperature, the tested lactic acid bacteria produced diacetyl in milk in the following order: Streptococcus thermophilus < Lactobacillus paracasei < Lactobacillus rhamnosus. Diacetyl increased during fermentation of 24 h, while a spontaneous and significant loss was registered when fermentation was prolonged to 48 h.  相似文献   

11.
Lactose hydrolyzed milk was developed in the 1970s to serve individuals with lactose intolerance. This demand for lactose-free products by lactose-intolerant consumers has created a market segment for this food whose quality control has to be guaranteed. In order to assess milk samples for lactose content, this work proposes an analytical methodology to classify regular and lactose-free ultra high temperature (UHT) milks using multivariate classification methods and NIR spectra obtained in FT-NIR and ultra-compact NIR spectrometers, aiming at field analysis. For this, 71 samples were purchased; 41 were lactose-free UHT milk and 30 regular UHT milk. Diffuse transflectance spectra were obtained by FT-NIR (833 to 2500 nm, 4 cm?1 of resolution and mean of 16 scans), and by ultra-compact NIR (908 to 1676 nm, with 12.5 nm of resolution and mean of 50 scans). The classification models were obtained by PLS-DA and LDA techniques with robust variables selection by SPA and GA, evaluating different spectral pre-processing (MSC, SNV, and derivatives). The three models developed (PLS-DA, GA-LDA, and SPA-LDA) with benchtop equipment spectra correctly classified all samples with sensitivity and specificity of 100%. For the portable equipment spectra, PLS-DA and GA-LDA models obtained sensitivity and specificity of 100%. The SPA-LDA model, however, presented sensitivity and specificity of 80 and 100%, respectively. These results indicate that methodologies using NIR equipment, especially the ultra-compact NIR, with multivariate classification techniques are feasible in discrimination between regular and lactose-free milk in the field, thus enabling a quick and precise analysis.  相似文献   

12.
The paper describes studies on the influence of heat impact in reconstituted skim milk on chemical and functional properties of yoghurt products. Reconstituted skim milk was heated for 20 min at 85°C, 90°C, or 95°C. Ropy (producing exopolysaccharides, EPS) or non‐ropy strains of S. thermophilus and L. delbrueckii subsp. bulgaricus were used as starter culture for yoghurt manufacture. The studies have shown that the fermentation times decreased with increasing heat impact when the ropy starter culture was used, while they remained to a far extent unchanged if the non‐ropy starter culture was applied. The lactic acid contents of the yoghurt products were in the same range when the milk was heated at 85°C or 90°C, while they were different when milk was heated at 95°C. There was a tendency visible that an increase in preheating leads to increased L (+)‐ and decreased D (–)‐lactic acid contents if the non‐ropy culture was applied. Using the ropy culture, it was vice versa. A slightly decrease in proteolysis with increasing heat impact was to be noted with both starter cultures. Concerning the relation of proteolysis to acidification, the fermentation process could be subdivided into three sections with different slopes if the non‐ropy starter culture was used, while a linear relation was found if the ropy starter culture was applied. Regarding final product characteristics it was found that the functional properties of yoghurt decreased with increasing heat impact when the ropy starter culture was applied, while they remained to a far extent unchanged when the non‐ropy starter culture was used. It can be concluded from these studies that a preheating of milk at a temperature of 85°C (20 min) is optimal in regard to final yoghurt product characteristics.  相似文献   

13.
The influence of milk acidification up to pH 6.0 with CO2 on D ‐ and L ‐lactic acid production and lactose consumption by yogurt starter, changes in the pH, and rheological and sensory properties of yogurt were studied. A slight influence of CO2 on lactic acid production during yogurt manufacture was detected. No significant changes in lactic acid concentration were observed during storage, although the final concentration was significantly lower in control than in pH 6.2 and 6.0 acidified samples. A great influence of CO2 on D ‐lactic acid production was not observed. Yogurt manufactured from milk with lower pH values showed lower final pH values after 7 days of storage. The viscosity was similar in all analysed samples. No significant differences in sensory characteristics between unacidified and acidified yogurts were detected. © 1999 Society of Chemical Industry  相似文献   

14.
The pH change kinetics during Kashar cheese production from raw and pasteurized milk with addition of thermophilic, mesophilic and mixed thermophilic-mesophilic lactic acid bacteria were evaluated. The kinetics of pH change were determined during milk ripening, cooking/holding and pressing/fermentation phases of Kashar cheese. The pH decreased logarithmically, nonlinearly, with time in the milk ripening period, and reduced linearly with time in the cooking/holding and pressing/fermentation stages. Pasteurization of milk retarded the rate of change in pH during the three periods. The highest rate of pH change was determined in the addition of thermophilic culture, followed by mixed thermophilic-mesophilic and then mesophilic ones during milk ripening. The pH change characteristics of cheese made with thermophilic starter were similar to the cheese made with mixed thermophilic-mesophilic culture, but different from mesophilic lactic acid bacteria during cooking/holding and pressing/fermentation stages.

PRACTICAL APPLICATIONS


One of the important factors in the control of cheese quality is the extent of acid production in the vat. Acid development at a desired rate is important during cheese making. The progress of acidification is monitored by pH change in the industrial Kashar cheese production. Three main stages have been recognized with respect to pH change: milk ripening, cooking/holding and pressing/fermentation. This study evaluated and compared the pH change kinetics during various stages of Kashar cheese making using raw, pasteurized milk with the addition of thermophilic, mesophilic and mixed thermophilic culture. This work may help in the comparison of raw and pasteurized milk, and in the selection of appropriate starter culture for Kashar cheese production.  相似文献   

15.
Milk coagulation is the primary step in the development of most dairy products. Raw milk from individual cows and different breeds exhibit distinct coagulation capacities. This variation is largely influenced by milk protein genetic variants. The aim of the present study was to evaluate differences in coagulation properties between milk obtained from three cattle breeds/types found in Sri Lanka. A total of 90 milk samples (400 mL from each individual) were collected from two Sri Lankan cattle breeds/types (Thamankaduwa White/TW and Local/“Batu” cattle) and one European cattle breed (Friesian). Collected samples were subjected to enzymatic coagulation using commercial rennet source (Chymax®, Christian Hansen Standard, Denmark) and lactic acid bacteria (LAB) coagulation using a commercial starter culture(YFL 8 12,Christian Hansen Standard, Denmark) to determine milk coagulation properties. Different properties of milk coagulum such as yield, curd firmness, syneresis and rheological properties were evaluated. The biochemical composition (lactose, protein, fat, solid-non-fat) of milk samples were determined. Capillary Zone Electrophoresis (CZE) method was used to determine milk protein genetic variants. Experimental design was Nested Completely Randomized Design with three treatments. Milk coagulation time and curd firmness after enzymatic-coagulation were not significantly different (p>0.05) among the breeds. Coagulum yield was significantly higher (p<0.05) for the TW type than that of other breeds. Coagulum yield was negatively correlated with β-caseinA1 and α-lactalbumin in both enzymatic (-0.58) and LAB coagulation (-0.69). Coagulum yield was positively correlated (p<0.05) with β-casein B variant (0.70), protein (0.34) and lactose (0.36) contents. Meltability value was weakly and positively (p<0.05) correlated (0.34) with fat content of milk. Overall results indicate that there is a significant correlation between milk coagulation properties and milk protein genetic variants in three cattle breeds/types considered in the current study. TW type is the unique among studied breeds in terms of coagulation properties and milk protein genetic variants.  相似文献   

16.
The relationships between growth of Staphylococcus aureus and production of deoxyribonuclease and enterotoxin A in cheese were evaluated. Conditions of cheese manufacture, such as the nature of milk used (heated or raw), type of lactic starter, and degree of starter activity, influenced deoxyribonuclease production. There was a close correlation between the S. aureus population and deoxyribonuclease content (correlation .88 in Cheddar and Colby cheeses for normal or inhibited starter, and .85 in Brick cheese for normal starter). Conditions which affected deoxyribonuclease production also had a similar influence on production of enterotoxin A. Detection of the former is especially useful in cheeses which may have had a partial starter failure not detected by the usual criteria of starter activity such as the titratable acidity of whey or the final pH of cheese. While the viable S. aureus population declined during aging, both deoxyribonuclease and enterotoxin A persisted for an extended time (3 yr at 4.4 C) in cheese of normal or inhibited starter.  相似文献   

17.
The yield and chemical structures of exopolysaccharides (EPS) produced by many strains of Streptococcus thermophilus have been characterized. However, the kinetics (or production profile) for EPS during milk fermentation is not clear. In this study, we investigated whether any differences existed in the yield and molar mass of EPS when milk was fermented at the same acidification rate by 2 strains of S. thermophilus (St-143 and ST-10255y). The type of EPS produced by these 2 strains is different. Milk samples were analyzed for EPS concentration every 30 min during a fermentation period of 270 min (final pH 4.5) by using a modified quantification method, which was faster and validated for its recovery of added EPS. Rheological properties of milks during fermentation were also analyzed using small-strain dynamic oscillatory rheology. For the determination of molar mass, EPS extracts were isolated by ultrafiltration of whey obtained during fermentation of milk to pH values 5.2, 4.9, 4.7, and 4.5, and molar mass was analyzed using size-exclusion chromatography–multi-angle laser light scattering. During fermentation, both strains appeared to start producing significant amounts of EPS after about ~150 min, which corresponded to pH ~5.3, which was close to the point of gelation. During the remainder of the fermentation process (150–270 min), the EPS concentration from strains St-143 and ST-10255y significantly increased from 30 to 72 mg/L and from 26 to 56 mg/L, respectively. The quantity of EPS recovered by our modified method was estimated to represent ~60% of the total EPS added to milk. The molar mass of EPS produced by both strains appeared to slightly decrease during fermentation. At pH 5.2, EPS from St-143 and ST-10255y had molar masses of 2.9 × 106 and 1.4 × 106 g/mol, respectively, which decreased to 1.6 × 106 and 0.8 × 106 g/mol, respectively, when the pH of milk was 4.5. Distinct differences were apparent in the rheological properties of gels fermented by the 2 strains. At the end of fermentation, St-143 fermented milk had weaker gels with storage modulus (G′) value at pH 4.6 of 26 Pa, whereas gels made with ST-10255y were stiffer with a G′ value at pH 4.6 of 82 Pa. For St-143 gels, maximum loss tangent (LTmax) values were higher (0.50) and occurred earlier (at a higher pH value) than the LTmax values (0.46) for gels from ST-10255y strain. Because the fermentation conditions were identical for both strains, the observed changes in rheological properties could be due to the differences in chemical structures and molar mass of the EPS produced by these 2 S. thermophilus strains.  相似文献   

18.
Shalgam juice, hardaliye, boza, ayran (yoghurt drink) and kefir are the most known traditional Turkish fermented non-alcoholic beverages. The first three are obtained from vegetables, fruits and cereals, and the last two ones are made of milk. Shalgam juice, hardaliye and ayran are produced by lactic acid fermentation. Their microbiota is mainly composed of lactic acid bacteria (LAB). Lactobacillus plantarum, Lactobacillus brevis and Lactobacillus paracasei subsp. paracasei in shalgam fermentation and L. paracasei subsp. paracasei and Lactobacillus casei subsp. pseudoplantarum in hardaliye fermentation are predominant. Ayran is traditionally prepared by mixing yoghurt with water and salt. Yoghurt starter cultures are used in industrial ayran production. On the other hand, both alcohol and lactic acid fermentation occur in boza and kefir. Boza is prepared by using a mixture of maize, wheat and rice or their flours and water. Generally previously produced boza or sourdough/yoghurt are used as starter culture which is rich in Lactobacillus spp. and yeasts. Kefir is prepared by inoculation of raw milk with kefir grains which consists of different species of yeasts, LAB, acetic acid bacteria in a protein and polysaccharide matrix. The microbiota of boza and kefir is affected from raw materials, the origin and the production methods.  相似文献   

19.
BACKGROUND: As the processing of amaranth in baked goods is challenging, the use of sourdough fermentation is a promising possibility to exploit the advantages of this raw material. In this study the fermentation properties of Lactobacillus plantarum, Lactobacillus paralimentarius and Lactobacillus helveticus in amaranth‐based sourdough were examined in order to validate them as starter cultures. pH, total titratable acidity (TTA) and lactic/acetic acid ratio of the sourdough and sensory properties of the resulting wheat bread were evaluated using fermentation temperatures of 30 and 35 °C. RESULTS: While fermentation pH, TTA and lactic acid concentration showed small variations with the use of L. plantarum and L. paralimentarius, L. helveticus reached the most intensive acidification after initial adaptation to the substrate. Acetic acid production was independent of lactic acid metabolism. Furthermore, the lactic/acetic acid ratio exceeded recommendation by 10–35 times (fermentation quotient 25–82). Sensory evaluation showed no significant differences between the two fermentation temperatures but differences among the three micro‐organisms. CONCLUSION: The results provide relevant information on the fermentation properties required of a customised starter for amaranth flour. Copyright © 2010 Society of Chemical Industry  相似文献   

20.
《Journal of dairy science》2021,104(9):9437-9449
Bacillus subtilis is a generally recognized as safe probiotic, which is used as a starter for natto fermentation. Natto is a functional food with antithrombus function due to nattokinase. Compared with natto, fermented milk is a more popular fermented food, which is commonly fermented by Lactobacillus bulgaricus and Streptococcus. However, there is no report on B. subtilis–fermented milk. In this study, to produce a functional fermented milk with antithrombus function, a B. subtilis strain (B. subtilis JNFE0126) that produced both nattokinase and milk-clotting enzyme was isolated from traditionally fermented natto and used as the starter for the functional fermented milk. In liquid fermentation culture, the peak values of thrombolytic activity and milk-clotting activity were 3,511 U/mL at 96 h and 874.5 Soxhlet unit/mL at 60 h, respectively. The optimal pH and temperature were pH 7.0 at 40°C for nattokinase and pH 6.5 and 55°C for milk-clotting enzyme, respectively. The thrombolytic activity in the fermented milk reached 215.1 U/mL after 8 h of fermentation. Sensory evaluation showed that the acceptance of the milk fermented by B. subtilis JNFE0126 was similar to the traditional milk fermented by L. bulgaricus and S. thermophilus. More importantly, oral intake of the fermented milk by the thrombosis-model mice prevented the development of thrombosis. Our results suggest that B. subtilis JNFE0126–fermented milk has potential as a novel, functional food in the prevention of thrombosis-related cardiovascular diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号