首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, changes in phospholipid compositions of liver microsomes, erythrocyte membranes, platelets, aorta, cardiac muscle and brain of rats fed olive oil were compared with those of rats fed sunflower oil. Four groups of rats starting at weaning were fed for four weeks a basal diet containing 5 or 25% olive oil or sunflower oil. We found that oleic acid was higher and linoleic acid was lower in membrane phospholipids of olive oil fed rats compared to sunflower oil fed rats. Polyunsaturated fatty acids of the n−3 series were markedly elevated in all tissues of rats on the olive oil diets relative to those on the sunflower oil diets. The results are consistent with a lower linoleic/linolenic acid ratio induced by the olive oil diets, suggesting a positive correlation between olive oil ingestion and n−3 polyunsaturated fatty acid levels in cell and tissue lipids. The study suggests that an adequate intake of olive oil may enhance the conversion of n−3 fatty acids.  相似文献   

2.
Hypocholesterolemic effects in older animals after long-term feeding are unknown. Therefore, aged rats (24 wk of age) fed a conventional diet were shifted to diets containing 10% perilla oil [PEO; oleic acid+linoleic acid+α-linolenic acid; n−6/n−3, 0.3; polyunsaturated fatty acid/saturated fatty acid (P/S), 9.6], borage oil [oleic acid+linoleic acid+α-linolenic acid; n−6/n−3, 15.1; P/S, 5.3], evening primrose oil (FPO; linoleic acid+γ-linolenic acid; P/S, 10.5), mixed oil (MIO; oleic acid+linoleic acid+γ-linolenic acid+α-linolenic acid; n−6/n−3, 1.7; P/S, 6.7), or palm oil (PLO; palmitic acid+oleic acid+linoleic acid; n−6/n−3, 25.3; P/S, 0.2) with 0.5% cholesterol for 15 wk in this experiment. There were no significant differences in the food intake and body weight gain among the groups. The liver weight in the PEO (n−6/n−3, 0.3) group was significantly higher than those of other groups in aged rats. The serum total cholesterol and very low density lipoprotein (VLDL) +intermediate density lipoprotein (IDL)+low density lipoprotein (LDL)-cholesterol concentrations of the PLO (25.3) group were consistently higher than those in the other groups. The serum high density lipoprotein cholesterol concentrations of the PEO (0.3) and EPO groups were significantly lower than in the other groups at the end of the 15-wk feeding period. The liver cholesterol concentration of the PLO (25.3) group was significantly higher than those of other groups. There were no significant differences in the hepatic LDL receptor mRNA level among the groups. Hepatic apolipoprotein (apo) B mRNA levels were not affected by the experimental conditions. The fecal neutral steroid excretion of the PLO (25.3) group tended to be low compared to the other groups. The results of this study demonstrate that both n\t-6 fatty acid and n\t-3 fatty acids such as \gg-linolenic acid and \ga-linolenic acid inhibit the increase of serum total cholesterol and VLDL+IDL+LDL-cholesterol concentrations of aged rats in the presence of excess cholesterol in the diet compared with dietary saturated fatty acid.  相似文献   

3.
The fatty acid composition of erythrocytes, platelets, and serum lipids was compared between subjects who had been eating a strict uncooked vegan diet (“living food”) for years and omnivore controls. The vegan diet contains equal amounts of fat but more monounsaturated and polyunsaturated and less saturated fatty acids than the mixed diet of the control group. In vegans, the proportion of linoleic acid was greater in all lipid fractions studied. Also, the levels of other n−6 fatty acids were greater, with the exception of arachidonic acid levels, which were similar in most fractions. In erythrocytes, platelets and serum phospholipid fractions, this increase was mainly at the expense of the n−3 fatty acids. The proportions of eicosapentaenoic and docosahexaenoic acid were only 29–36% and 49–52% of those in controls, respectively. In vegans the ratio of n−3 to n−6 fatty acids was only about half that in omnivores. In addition to the lower levels of n−3 fatty acids, the proportions of palmitic and stearic acids were lower in serum cholesteryl esters, triglycerides and free fatty acids of vegans. The proportion of oleic acid was slightly lower only in serum cholesteryl esters and erythrocyte phosphatidylserine. The results show that, in the long term, the vegan diet has little effect on the proportions of oleic and arachidonic acids, whereas the levels of n−3 fatty acids are depressed to very low levels with prolonged consumption of the high linoleic and oleic acid components of this diet.  相似文献   

4.
The effect of dietary α-linolenic acid (18∶3n−3) and its ratio to linoleic acid (18∶2n−6) on platelet and plasma phospholipid (PL) fatty acid patterns and prostanoid production were studied in normolipidemic men. The study consisted of two 42-d phases. Each was divided into a 6-d pre-experimental period, during which a mixed fat diet was fed, and two 18-d experimental periods, during which a mixture of sunflower and olive oil [low 18∶3n−3 content, high 18∶2/18∶3 ratio (LO-HI diet)], soybean oil (intermediate 18∶3n−3 content, intermediate 18∶2/18∶3 ratio), canola oil (intermediate 18∶3n−3 content, low 18∶2/18∶3 ratio) and a mixture of sunflower, olive and flax oil [high 18∶3n−3 content, low 18∶2/18∶3 ratio (HI-LO diet)] provided 77% of the fat (26% of the energy) in the diet. The 18∶3n−3 content and the 18∶2/18∶3 ratio of the experimental diets were: 0.8%, 27.4; 6.5%, 6.9; 6.6%, 3.0; and 13.4%, 2.7, respectively. There were appreciable differences in the fatty acid composition of platelet and plasma PLs. Nevertheless, 18∶1n−9, 18∶2n−6 and 18∶3n−3 levels in PL reflected the fatty acid composition of the diets, although very little 18∶3n−3 was incorporated into PL. Both the level of 18∶3n−3 in the diet and the 18∶2/18∶3 ratio were important in influencing the levels of longer chain n−3 fatty acid, especially 20∶5n−3, in platelet and plasma PL. Production of 6-keto-PGF was significantly (P<0.05) higher following the HI-LO diet than the LO-HI diet although dietary fat source had no effect on bleeding time or thromboxane B2 production. The present study showed that both the level of 18∶3n−3 in the diet and its ratio to 18∶2n−6 were important in influencing long-chain n−3 fatty acid levels in platelet and plasma PL and that prostanoid production coincided with the diet-induced differences in PL fatty acid patterns.  相似文献   

5.
The seed lipids from five sunflower mutants, two with high palmitic acid contents, one of them in high oleic background, and three with high stearic acid contents, have been characterized. All lipid classes of these mutant seeds have increased saturated fatty acid content although triacylglycerols had the highest levels. The increase in saturated fatty acids was mainly at the expense of oleic acid while linoleic acid levels remained unchanged. No difference between mutants and standard sunflower lines used as controls was found in minor fatty acids: linolenic, arachidic, and behenic. In the high-palmitic mutants palmitoleic acid (16∶1n−7) and some palmitolinoleic acid (16∶2n−7, 16∶2n−4) also appeared. Phosphatidylinositol, the lipid with the highest palmitic acid content in controls, also had the highest content of palmitic or stearic acids, depending on the mutant type, suggesting that saturated fatty acids are needed for its physiological function. Positional analysis showed that mutant oils have very low content of saturated fatty acids in the sn-2 position of triacylglycerols, between the content of olive oil and cocoa butter.  相似文献   

6.
Starting three weeks before mating, 12 groups of female rats were fed different amounts of linoleic acid (18∶2n−6). Their male pups were killed when 21-days-old. Varying the dietary 18∶2n−6 content between 150 and 6200 mg/100 g food intake had the following results. Linoleic acid levels remained very low in brain, myelin, synaptosomes, and retina. In contrast, 18∶2n−6 levels increased in sciatic nerve. In heart, linoleic acid levels were high, but were not related to dietary linoleic acid intake. Levels of 18∶2n−6 were significantly increased in liver, lung, kidney, and testicle and were even higher in muscle and adipose tissue. On the other hand, in heart a constant amount of 18∶2n−6 was found at a low level of dietary 18∶2n−6. Constant levels of arachidonic acid (20∶4n−6) were reached at 150 mg/100 g diet in all nerve structures, and at 300 mg/100g diet in testicle and muscle, at 800 mg/100 g diet in kidney, and at 1200 mg/100 g diet in liver, lung, and heart. Constant adrenic acid (22∶4n−6) levels were obtained at 150, 900, and 1200 mg/100 g diet in myelin, sciatic nerve, and brain, respectively. Minimal levels were difficult to determine. In all fractions examined accumulation of docosapentaenoic acid (22∶5n−6) was the most direct and specific consequence of increasing amounts of dietary 18∶2n−6. Tissue eicosapentaenoic acid (20∶5n−3) and 22∶5n−3 levels were relatively independent of dietary 18∶2n−6 intake, except in lung, liver, and kidney. In several organs (muscle, lung, kidney, liver, heart) as well as in myelin, very low levels of dietary linoleic acid led to an increase in 20∶5n−3. Dietary requirements for 18∶2n−6 varied from 150 to 1200 mg/100 g food intake, depending on the organ and the nature of the tissue fatty acid. Therefore, the minimum dietary requirement is estimated to be about 1200 mg/100 g (i.e., the level that ensures stable and constant amounts of arachidonic acid).  相似文献   

7.
The present study examined the effect of varying dietary linoleate intake (0.01, 0.24, 2.4, 24, 80 or 160 g/kg diet) for 24 weeks on the distribution of triacylglycerol (TG) molecular species in rat epididymal adipose tissue. Adipose TG fractions were purified by thin-layer chromatography and separated into different molecular species by reversephase high-performance liquid chromatography. The identification of TG species was based on fatty acid composition, retention time and the theoretical carbon number. When the dietary 18∶2n−6 content was equal to or less than 24 g/kg, no significant amounts of n−6 fatty acids (mainly 18∶2n−6) were observed in adipose tissue TG despite the fact that the levels of 20∶4n−6 in liver phospholipids increased significantly. There were 12 major molecular species in adipose tissue when the dietary 18∶2n−6 content was less than 2.4 g/kg. When the diteary 18∶2n−6 content reached 24 g/kg, an additional six TG species containing one, two or three molecules of 18∶2n−6 were observed. The levels of TG molecules containign two or three 18∶2n−6 residues were further increased when the diet contained very large amounts of linoleic acid (160 g/kg). Conversely, those TG species containing only one 18∶2n−6 residue became less abundant. It is suggested that the accumulation of these linoleate-rich TG molecular species in adipose tissue, particularly di- and trilinoleoyl containing TG, is the result of an adequate or an excessive intake of linoleic acid.  相似文献   

8.
Kim HK  Choi H 《Lipids》2001,36(12):1331-1336
This study was designed to examine the effects of dietary n−3 and n−6 polyunsaturated fatty acids (PUFA) on postprandial lipid levels and fatty acid composition of hepatic membranes. Male Sprague-Dawley rats were trained for a 3−h feeding protocol and fed one of five semipurified diets: one fat-free diet or one of four diets supplemented with 10% (by weight) each of corn oil, beef tallow, perilla oil, and fish oil. Two separate experiments were performed, 4-wk long-term and 4-d short-term feeding models, to compare the effects of feeding periods. Postprandial plasma lipid was affected by dietary fats. Triacylglycerol (TG) and total cholesterol levels were decreased in rats fed perilla oil and fish oil diets compared with corn oil and beef tallow diets. Hepatic TG and total cholesterol levels were also reduced by fish oil and perilla oil diets. Fatty acid composition of hepatic microsomal fraction reflected dietary fatty acids and their metabolic conversion. The major fatty acids of rats fed the beef tallow diet were palmitic, stearic, and oleic. Similarly, linoleic acid (LA) and arachidonic acid in the corn oil group, α-linolenic acid (ALA) and eicosapentaenoic acid (EPA) in the perilla oil group, and palmitic acid and docosahexaenoic acid (DHA) in the fish oil group were detected in high proportions. Both long- and short-term feeding experiments showed similar results. In addition, microsomal DHA content was negatively correlated with plasma lipid levels. Hepatic lipid levels were also negatively correlated with EPA and DHA contents. These results suggest that n−3 ALA has more of a hypolipidemic effect than n−6 LA and that the hypolipidemic effect of n−3 PUFA may be partly related to the increase of EPA and DHA in hepatic membrane.  相似文献   

9.
The metabolism of α-linolenic acid from canola oil was studied in eight normolipidemic men. The 42-day study was divided into three periods: a 6-day pre-experimental and two 18-day experimental. Approximately 75% of the dietary fat (28% of total energy) was provided by a mixture of fats during the pre-experimental period and either canola oil (CO) or sunflower oil (SO) during the experimental periods. The CO and SO diets were fed in a cross-over design. The ratios of linoleic to linolenic acid were 2.6∶1 and 73.9∶1 in the CO and SO diets, respectively. Dietary fat source had an effect on plasma phospholipid fatty acids: 18∶1n−9, 18∶3n−3 and 20∶5n−3 were higher (p<0.05), and 18∶2n−6 was lower in the phosphatidylcholine fraction; 18∶1n−9 was higher and 20∶4n−6 lower in the phosphatidyl-ethanolamine fraction; and 18∶1n−9 and 20∶5n−3 were higher and 20∶4n−6 and 22∶6n−3 were lower in the alkenylacyl-ethanolamine phospholipid fraction on the CO diet as compared to the SO diet. Consumption of the canola oil diet resulted in higher n−3 fatty acid levels and lower n−6 fatty acid levels in plasma phospholipids than consumption of the sunflower oil diet.  相似文献   

10.
The purpose of this study was to determine the responsiveness of alveolar type II cells to dietary fish oil and the consequent effects on alveolar and lung surfactant. Rats were fed a corn oil or a fish oil diet for four weeks. Dietary n−3 fatty acids were readily incorporated into the type II cell phospholipids as indicated by higher levels of eicosapentaenoic acid (2.77±0.10%) and docosahexaenoic acid (1.63±0.10%) in the group receiving the fish oil diet. The elevated levels of n−3 fatty acids were accompanied by concomitant reduction in arachidonic acid and linoleic acid. Neither eicosapentaenoic acid nor docosahexaenoic acid was incorporated into type II cell triacylglycerols. Feeding a fish oil containing diet increased surfactant phospholipids, particularly 1,2-disaturated acyl phosphatidylcholines in whole lung compared to a corn oil diet. However, the amount of surfactant found in the alveolus was not different between the two diet treatment groups. The results suggest that dietary n−3 fatty acids stimulate synthesis and/or inhibit degradation of lung surfactant without altering surfactant secretion in alveoli.  相似文献   

11.
The effects of oil-derived dietary essential fatty acids on the activities of mitchondrial Mn-SOD (manganese-superoxide dismutase) and cytosolic cupric zinc-superoxide dismutase (Cu/Zn-SOD) were investigated in rat heart. A control group of rats was fed a stock diet for 29 d, and a second group was fed on a fat-free diet. Three other groups were fed fat-free diets that were supplemented with (i) borage oil, which is rich in linoleic (18∶2n−6) and γ-linolenic (18∶3n−6) acids, (ii) fungal oil, which is rich in γ-linolenic, but low in linoleic acid, or (iii) evening primrose oil, which is rich in linoleic acid and low in γ-linolenic acid. An increase in the percentage composition of arachidonic acid (20∶4n−6) in both the choline and ethanolamine phospholipids, together with a decrease in linoleic acid in ethanolamine phospholipids, were found in heart membranes after feeding the rats with diets containing borage oil or fungal oil as compared to those fed the stock diet. The respective activities of Mn-SOD in rats fed the borage or fungal oil diets were also significantly higher than in rats fed the stock diet alone. No change in cytosolic Cn/Zn-SOD activity was observed. Dietary supply of linoleic acid-rich evening primrose oil resulted in an increased proportion of choline phospholipid linoleic acid without any changes in arachidonic acid content or in the activity of Mn-SOD. By contrast, a reduction in the activity of Mn-SOD was detected in rats fed a fat-free diet. These results show that the activity of heart mitochondrial Mn-SOD is influenced by dietary essential fatty acids, whereas the activity of cytosolic Cu/Zn-SOD remained unaffected.  相似文献   

12.
Cynomolgus monkeys were fed oils high in linoleic acid or with half of the linoleic acid replaced by either (n−3) linolenic acid or marine fatty acids. When the diet contained similar quantities of linoleic and (n−3) linolenic acid, erythrocyte fatty acids maintained a ratio of (n−6) to (n−3) fatty acids of approximately 2∶4. Fatty acids from menhaden oil enhanced the incorporation of eicosapentaenoic and docosahexaenoic acids into the monkey erythrocytes, the composition of which was not altered by additional α-tocopherol.  相似文献   

13.
The effect of dietary fat on the long-chain acyl-CoA ester profile of liver and skeletal muscle was investigated by feeding weanling rats 12%-fat diets composed of high-linoleic safflower oil (73% 18∶2n−6), high-oleic safflower oil (70% 18∶1n−9) or olive oil (70% 18∶1n−9) for six and ten weeks. Approximately 50% of both hepatic and skeletal muscle acyl-CoA esters comprised linoleoyl-CoA or oleoyl-CoA with high-linoleic or oleic feeding, respectively. Total hepatic acyl-CoA ester concentration was 40% higher (p<0.05) in rats fed 12% fat compared with controls fed a 4%-fat diet. These data demonstrate that the long-chain acyl-CoA ester profile of liver and skeletal muscle reflects the dietary fatty acid profile.  相似文献   

14.
Three groups of rats were fed diets with either 10 weight percent (wt%) of evening primrose oil, safflower oil or soybean oil for 11 weeks. Diets contained 7.1 wt% linoleic acid +0.8 wt% γ-linolenic acid, 7.6 wt% linoleic acid, or 5.3 wt% linoleic acid +0.7 wt% α-linolenic acid, respectively. In liver mitochondria as well as in heart, dietary γ-linolenic acid did not affect the fatty acid profiles of phosphatidylcholnes (PC), phosphatidylethanolamines (PE) or cardiolipins (CL), whereas dietary α-linolenic acid caused an increased formation of (n−3) polyunsaturated fatty acids (PUFA). The liver Δ6− and Δ5-desaturase activities determined in vitro were not affected by the dietary fats. In brain PE, which are rich in C22− and C20-(n−3) PUFA, as well as in testes PC and PE, which are rich in (n−6) PUFA, no effects were found from a partial replacement of dietary linoleic acid with γ-linolenic acid or α-linolenic acid. In kidney PC, PE, phosphatidylinositol (PI) and CL, 20∶3(n−6) was moderately elevated to ca. 1% following intake of γ-linolenic acid, whereas partial replacement of linoleic acid with α-linolenic acid was followed by increased deposition of 22∶6(n−3) in PC and PE of testes and kidney. Thus, no general effect of evening primrose oil on the content of (n−6) PUFA in rat tissue phospholipids was observed, wheras a significant incorporation of γ-linolenic acid into liver and adipose tissue triglycerides was found.  相似文献   

15.
Changes in fatty acid composition, microsomal Δ9- and Δ6-desaturase activities and liver contents of cholesterol and phospholipids were studied in rats fed medium chain triglyceride-supplemented diets. Weanling rats were divided into four groups and fed for three weeks a basal diet with different 10%-fat supplements: corn oil, medium chain triglyceride-corn oil, olive oil and medium chain triglyceride-olive oil. The highest relative content of saturated fatty acids corresponded to corn oil-fed animals. Both monounsaturated fatty acid content and Δ9-desaturase activity were higher in the animals fed olive oil diets than in corn oil-fed rats. The long chain polyunsaturated fatty acids of the n−3 series were increased in the olive oil and medium chain triglyceride-olive oil-fed groups probably due to the lower linoleic/α-linolenic ratios found in these two diets. The cholesterol/phospholipid molar ratio was unaffected by diet and the unsaturation index was only slightly changed in the four groups. Thus, some mechanism may be operative under these conditions to maintain the homeostasis of the membrane.  相似文献   

16.
Male Sprague-Dawley weanling rats were fed isocaloric diets consisting of 10% (by wt) fat. The six groups differed in the ratio of corn oil and butter fat present in the diets such that: 10C, 10% corn oil (C); 8C2B, 8% C/2% butter fat (B); 6C4B, 6% C/4% B; 4C6B, 4% C/6% B; 2C8B, 2% C/8% B; and 10B, 10% B. Liver plasma membranes were analyzed for fatty acid composition and cholesterol/phospholipid molar ratio. The 18∶2n−6 content was constant in the 10C and 8C2B diets and then decreased linearly through the 2C8B diet. The 20∶4n−6 and 18∶1n−9 contents were constant except in the 10B diet, in which a significant decrease and increase, respectively, were observed. The cholesterol/phospholipid molar ratio increased between the 10C and 6C4B diets and subsequently (4C6B and 10B diets) remained constant. This data indicates that changes in n−6 fatty acid content in the liver plasma membrane are directly related to dietary intake only for 18∶2n−6. Arachidonic acid content in the membrane is maintained at a constant level until the linoleic acid content of the diet is reduced to 0.5% of calories. It also indicates that the cholesterol content of the membrane becomes saturated and does not increase with increasing concentrations of saturated fat in the diet. Presented in part at the FASEB Meeting, Washington, D.C., April, 1987.  相似文献   

17.
Xu X  Kestemont P 《Lipids》2002,37(3):297-304
Eurasian perch, Perca fluviatilis, were fed a semipurified fat-free diet for 4 wk, followed by a 16% feeding supplementation of either olive oil (OO), safflower oil (SO), linseed oil (LO), or cod liver oil (CLO) as the only lipid source in each diet for 10 wk. Significant reductions in total lipid of tissues were observed (31.4% in viscera, 66.7% in muscle, and 74.1% in liver) after feeding the fat-free diet. The SO-, LO-, and CLO-fed fish significantly increased lipid deposition in liver and viscera compared to fish fed the OO diet; however, muscle lipid levels were not significantly affected. Large amounts of dietary 18∶1n−9 were incorporated directly into tissue lipids when fish were fed the OO diet. The LO diet significantly elevated 18∶4n−3, 20∶5n−3, 22∶5n−3, and 22∶6n−3 in the liver compared to fish fed OO or SO diets, and the n−3/n−6 ratio was 16 times that of the SO group, with significantly high desaturation and elongation products of 18∶3n−3. These results suggest that Δ6 and Δ5 desaturases are highly active in Eurasian perch, and that the enzymes at this dietary n−3/n−6 ratio favor 18∶3n−3 over 18∶2n−6 as substrate. The SO diet significantly increased 18∶3n−6, 20∶3n−6, and 22∶5n−6 in the liver and significantly decreased EPA and DHA. This indicates that desaturation enzymes were not specifically favoring n−3 over n−6 acids in perch lipid metabolism, and that these elongation and desaturation enzymes were influenced by n−3 and n−6 FA content in the diet. The present study indicates that high tissue content of DHA in the muscle of Eurasian perch was attributable to the greater ability for n−3 acid bioconversion.  相似文献   

18.
Hibbeln JR  Nieminen LR  Lands WE 《Lipids》2004,39(12):1207-1213
Clinical intervention trials and animal studies indicate that increasing dietary intakes of long chain n−3 FA or reducing linoleic acid intake may reduce aggressive and violent behaviors. Here we examine if economic measures of greater n−6 consumption across time and countries correlate with greater risk of homicide. Linoleic acid available for human consumption was calculated from World Health Organization disappearance data for 12 major seed oils in the food supply for the years 1961 to 2000 in Argentina, Australia, Canada, the United Kingdom, and the United States (US). Homicide mortality rates, adjusted for age, were obtained from the central judicial authority of each country. Apparent linoleic acid intake from seed oil sources ranged from 0.29 en% (percentage of daily food energy) (Australia 1962) to 8.3 en% (US 1990s). Greater apparent consumption of linoleic acid correlated with higher rates of homicide mortality over a 20-fold range (0.51–10.2/100,000) across countries and time in an exponential growth regression model (r=0.94, F=567, P<0.00001). Within each country, correlations between greater linoleic acid disappearance and homicide mortality over time were significant in linear regression models. Randomized controlled trials are needed to determine if reducing high intakes of linoleic acid by seed oils with alternative compositions can reduce the risk of violent behaviors. These dietary interventions merit exploration as relatively cost-effective measures for reducing the pandemic of violence in Western societies, just as dietary interventions are reducing cardiovascular mortality. Low linoleate diets may prevent behavioral maladies that correctional institutions, social service programs, and mental health providers intend to treat.  相似文献   

19.
Although large amounts of olive oil are produced in Turkey, not much information on its chemical composition is available in the literature to date. The aim of this study was to evaluate the chemical composition of commercial olive oils produced from the Ayvalik olive cultivar in Canakkale, Turkey. Five different samples corresponding to the olive oil categories of extra virgin (conventional, extra virgin olive oil (EVOO), and organic extra virgin olive oil (OGOO) production), virgin olive oil (OO-1), ordinary virgin olive oil (OO-2) and refined olive oil (RFOO) were evaluated. Olive oils were collected from two consecutive production years. According to the free fatty acids, the absorbance values (K232 and K270), and peroxide values of all the samples conformed to the European standards for olive oil. The level of oleic acid was in the range of 68–73%; while the linoleic acid content was significantly lower in the refined olive oils. The tocopherol and polyphenol content was in the lower range of some European olive oils. However, pinoresinol was a major phenolic compound (5–77 mg/kg depending on the oil category). Its content was markedly higher than in many other oils, which would be a useful finding for olive oil authentication purposes.  相似文献   

20.
n−3 fatty acid enrichment of edible tissue of poultry: A review   总被引:1,自引:0,他引:1  
Rymer C  Givens DI 《Lipids》2005,40(2):121-130
There is clear evidence of the nutritional benefits of consuming long-chain n−3 PUFA, which are found predominantly in oily fish. However, oily fish consumption, particularly in the United Kingdom, is declining, as is the consumption of all meats with the exception of poultry, which has increased in consumption by 73% in the last 30 yr. This pattern, if less marked, is reflected throughout Europe, and therefore one means of increasing long-chain n−3 PUFA consumption would be to increase the long-chain n−3 PUFA content in the edible tissues of poultry. This review considers the feasibility of doing this, concentrating particularly on chickens and turkeys. It begins by summarizing the benefits to human health of consuming greater quantities of n−3 FA and the sources of n−3 PUFA in the human diet. The literature on altering the FA composition of poultry meat is then reviewed, and the factors affecting the incorporation of n−3 PUFA into edible tissues of poultry are investigated. The concentration of α-linolenic acid (ALA) in the edible tissues of poultry is readily increased by increasing the concentration of ALA in the birds' diet (particularly meat with skin, and dark meat to a greater extent than white meat). The concentration of EPA in both white and dark meat is also increased when the birds' diet is supplemented with EPA, although supplementing the diet with the precursor (ALA) does not result in a noticeable increase in EPA content in the edible tissues. Although supplementing the birds' diets with relatively high concentrations of DHA does result in an increased concentration of DHA in the tissues, the relationship between dietary and tissue concentrations of DHA is much weaker than that observed with ALA and EPA. The impact that altering the FA composition of edible poultry tissue may have on the organoleptic and storage qualities of poultry products is also considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号