首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Young tomato plants (Lycopersicon esculentum) grown in sand in a greenhouse and subjected to different fertilization regimes were used to test the effects of nitrogen availability on constitutive levels of phenolics and on constitutive and inducible activities of polyphenol oxidase and proteinase inhibitors. Theories that emphasize physiological constraints on the expression of phytochemicals predict an increase in levels of carbon-based allelochemicals under moderate nitrogen stress but predict, under the same conditions, an attenuation of chemical responses involving nitrogen-containing compounds such as proteinase inhibitors and polyphenol oxidase. We found that nitrogen availability had a strong effect on constitutive levels of phenolics; weaker effects on constitutive polyphenol oxidase activity, constitutive proteinase inhibitor activity, and inducible polyphenol oxidase activity; and no effect on inducible proteinase inhibitor activity. These results point to a need for the integration of theories that emphasize physiological influences on secondary metabolism with those that emphasize ecological influences on secondary metabolism and suggest that current theories of plant defense do not adequately account for enzymatic and proteinaceous defenses against arthropods.  相似文献   

2.
The effects of mechanical and chemical damage and three types of biotic damage on the activities of four foliar proteins of the tomato plant (Lycopersicon esculentum Mill var. Castlemart) were assayed. Proteinase inhibitor, polyphenol oxidase, peroxidase, and lipoxygenase activities were assayed in damaged leaflets and compared with activities in undamaged leaflets. These proteins are putative plant defenses in tomato. Differential induction of these proteins by the various damage-treatments was demonstrated, such that different subsets of the four proteins were induced by different types of damage. This study clearly demonstrates the ability of plants to respond differentially to different types of damage. Possible mechanisms for this differential induction and the implications of differential induction for plant defense are discussed.  相似文献   

3.
The jasmonate (JA) and salicylate (SA) signaling pathways in plants provide resistance to herbivorous insects and pathogens. It is known that these pathways interact, sometimes resulting in antagonism between the pathways. We tested how the timing and concentration of elicitation of each pathway influenced the interaction between the jasmonate and salicylate pathways measured in terms of five biochemical responses and biological resistance to caterpillars and bacteria. The salicylate pathway had a stronger effect on the jasmonate pathway than did the reverse. The negative signal interaction was generated by two distinct paths in the plant. A negative interaction in the biochemical expression of the two pathways was most consistent in the simultaneous elicitation experiments compared to when the elicitors were temporally separated by two days. Herbivore bioassays with Spodoptera exigua also consistently reflected an interaction between the two pathways in the simultaneous elicitation experiments. The negative signal interaction reducing biological resistance to the herbivore was also demonstrated in some temporally separated treatment combinations where attenuation of the biochemical response was not evident. Concentration of the elicitors had an effect on the pathway interaction with consistent biochemical and biological antagonism in the high concentration experiments and inconsistent antagonism in the low concentration experiments. The bacterial pathogen, Pseudomonas syringae pv. tomato (Pst), consistently showed reduced lesion development on plants with SA responses activated and, in some experiments, on JA-elicited plants. Resistance to Pst was not reduced or enhanced in dual-elicited plants. Thus, signal interaction is most consistent when elicitors are applied at the same time or when applied at high doses. Signal interaction affected the herbivore S. exigua, but not the pathogen Pst.  相似文献   

4.
Oxidative responses of plants to pathogens and other environmental stresses have received considerable recent attention. We propose that an oxidative response also occurs following attack by herbivores. Our data strongly indicate a shift in the oxidative status of soybean following herbivory by the insectHelicoverpa zea. Herbivory caused significant increases in lipid peroxidation and ·OH radical formation. The activity of several oxidative enzymes including lipoxygenases, peroxidase, diamine oxidase, ascorbate oxidase, and NADH oxidase I increased after herbivory on soybean. The enhanced production of phenolic compounds is indicated by an increase in the activity of phenylalanine ammonia lyase in wounded tissues. On the other hand, the level of soybean foliar antioxidants such as ascorbic acid, total carotenoids, nonprotein thiols, and catalase decreased significantly following herbivory. These results implicate primary compounds (e.g., ascorbic acid, proteins), secondary metabolites (e.g., phenolics), and reactive oxygen species (e.g., hydroxyl radical, hydrogen peroxide) as multiple components of induced resistance. The oxidative changes in the host plant correspond with increased oxidative damage in the midgut of insects feeding on previously wounded plants. Decreases in nonprotein thiols and reduced ascorbic acid occurred in midgut epithelial tissue from insects feeding on wounded plants compared to the insects on control plants. In contrast, midgut hydroperoxides and dehydroascorbic acid concentrations were greater in insects on wounded plants compared to their counterparts on control plants. We conclude that oxidative responses in soybean may have both positive and negative effects upon the host plant: a decrease in herbivory and an increase in oxidative damage to the plant. The salient benefit to the plant, in terms of insect resistance, is the relative balance between these opposing effects.  相似文献   

5.
Constitutive phenolase activity of plants has a profound ability to modulate disease in insects caused by baculoviruses. We investigated the influence of damage-induced plant phenolic oxidases in cotton and tomato on mortality caused by two different baculoviruses in their respective hosts, Heliothis virescens (L.) and Helicoverpa zea (Boddie). For both plant species, peroxidase (POD) and phenolic levels were predictive of larval mortality caused by baculoviruses. The higher the POD activity, the lower the mortality in both hosts. Different classes of phenolics (e.g., monohydroxyphenolics vs. catecholic phenolics) in combination with POD activity had different effects on the severity of viral disease depending upon mixture, which implies that viral efficacy is predictable only if total chemical content of the plants is specified. Inhibition of baculoviral disease by plant phenolase activity has potential implications for the compatibility of baculoviruses with induced resistance in IPM programs.  相似文献   

6.
The potential role of the plant enzyme lipoxygenase in host resistance against the corn earwormHelicoverpa zea was examined. Lipoxygenase is present in most of the common host plants ofH. zea, with highest activity in the leguminous hosts such as soybean and redbean. Treatment of dietary proteins with linoleic acid and lipoxygenase significantly reduced the nutritive quality of soybean protein and soy foliar protein. Larval growth was reduced from 24 to 63% depending upon treatment. Feeding byH. zea on soybean plants caused damage-induced increases in foliar lipoxygenase and lipid peroxidation products. Larvae feeding on previously wounded plant tissue demonstrated decreased growth rates compared to larvae feeding on unwounded tissue. Midgut epithelium from larvae feeding on wounded tissues showed evidence of oxidative damage as indicated by significant increases in lipid peroxidation products and losses in free primary amines. The potential role of oxidative and nutritional stress as a plant defensive response to herbivory is discussed.  相似文献   

7.
Several compounds that retard the larval growth of the tomato fruitworm,Heliothis zea (Boddie) have been isolated and identified from tomato leaves,Lycopersicon esculentum Mill. The major allelochemics are -tomatine (I), chlorogenic acid (II), rutin (III), and a new caffeyl derivative of an aldaric acid (IV). The isolation, analyses, and toxicity of these compounds toH. zea are presented.Reference to a company and/or product named by the department is only for purposes of information and does not imply approval or recommendation of the product to the exclusion of others which may also be suitable  相似文献   

8.
The foliage and fruit of the tomato plantLycopersicon esculentum contains polyphenol oxidases (PPO) and peroxidases (POD) that are compartmentally separated from orthodihydroxyphenolic substrates in situ. However, when leaf tissue is damaged by insect feeding, the enzyme and phenolic substrates come in contact, resulting in the rapid oxidation of phenolics to orthoquinones. When the tomato fruitwormHeliothis zea or the beet army-wormSpodoptera exigua feed on tomato foliage, a substantial amount of the ingested chlorogenic acid is oxidized to chlorogenoquinone by PPO in the insect gut. Additionally, the digestive enzymes of the fruitworm have the potential to further activate foliar oxidase activity in the gut. Chlorogenoquinone is a highly reactive electrophilic molecule that readily binds cova-lently to nucleophilic groups of amino acids and proteins. In particular, the —SH and —NH2 groups of amino acids are susceptible to binding or alkylation. In experiments with tomato foliage, the relative growth rate of the fruitworm was negatively correlated with PPO activity. As the tomato plant matures, foliar PPO activity may increase nearly 10-fold while the growth rate of the fruitworm is severely depressed. In tomato fruit, the levels of PPO are highest in small immature fruit but are essentially negligible in mature fruit. The growth rate of larvae on fruit was also negatively correlated with PPO activity, with the fastest larval growth rate occurring when larvae fed on mature fruit. The reduction in larval growth is proposed to result from the alkylation of amino acids/protein byo-quinones, and the subsequent reduction in the nutritive quality of foliage. This alkylation reduces the digestibility of dietary protein and the bioavailability of amino acids. We believe that this mechanism of digestibility reduction may be extrapolatable to other plant-insect systems because of the ubiquitous cooccurrence of PPO and phenolic substrates among vascular plant species.  相似文献   

9.
Constitutive and Jasmonate-Inducible Traits of Datura wrightii   总被引:2,自引:0,他引:2  
Plants in the family Solanaceae possess numerous traits that are induced from damage from herbivores. Many of these also can be induced by exposing plants to the plant hormone jasmonic acid or its volatile ester methyl jasmonate. Datura wrightii (Solanaceae) is dimorphic for leaf trichome morphology in most southern California populations. Trichome phenotype is governed by a single gene, and the glandular trichome condition is dominant and under developmental control. This study addressed two major objectives. The first was to determine if mature plants with glandular or nonglandular trichomes responded differentially to methyl jasmonate. The second objective was to determine if exposure of seedlings to methyl jasmonate during the period of trichome differentiation altered either the phenotype or the density of trichomes that mature plants expressed. Methyl jasmonate induced from 200 to 800 μg/ml of proteinase inhibitor activity and increased the activity of polyphenol oxidase by more than threefold depending on the experiment. These increases did not differ significantly between plants expressing glandular or nonglandular trichomes. Methyl jasmonate exposure did not increase the activity of peroxidase or the concentration of scopolamine or hyoscyamine, the two major alkaloids of Datura. Exposure to methyl jasmonate during trichome differentiation did not affect either the final trichome phenotype or the density of either type of trichome, but did increase the production of acylsugars in glandular trichomes by 44%. Because trichome phenotype was not inducible, and because both trichome phenotypes showed similar increases in proteinase inhibitors and polyphenol oxidase activity, the methyl-jasmonate-inducible responses of D. wrightii are independent of trichome phenotype in D. wrightii.  相似文献   

10.
Tomato (Solanum lycopersicum) polyphenol oxidases (PPOs), enzymes that oxidize phenolics to quinones, have been implicated in plant resistance to insects. The role of PPO in resistance to cotton bollworm [Helicoverpa armigera (Hübner)] and beet armyworm [Spodoptera exigua (Hübner)] (Lepidoptera: Noctuidae) was evaluated. Consumption, weight gains, and mortality of larvae feeding on foliage of transgenic tomato lines overexpressing PPO (OP lines) and of larvae feeding on foliage of transgenic tomato lines with suppressed PPO (SP lines) were compared with consumption, weight gains, and mortality of larvae feeding on non-transformed (NT) plants. Increases in foliage consumption and weight gains were observed for cotton bollworms feeding on leaves of SP plants compared to NT and OP plants. PPO activity was negatively correlated with both weight gains and foliar consumption of cotton bollworm, substantiating the defensive role of PPO against this insect. Similarly, beet armyworm consumed less foliage (both young and old leaves) from OP plants than SP plants. Larvae feeding on OP leaves generally exhibited lower weight gains than those feeding on SP leaves. These results indicate that tomato PPO plays a role in resistance to both cotton bollworm and beet armyworm.  相似文献   

11.
Podocarpus gracilior is resistant in nature to insect attack. Apparently, the resistance ofP. gracilior is due to a multichemical defense mechanism. Chemicals identified as potential components of the multichemical defense are four norditerpenedilactones, including nagilactones, C, D, and F, which cause insect feeding deterrent activity ultimately coupled to an insecticidal activity, and podolide, an insecticide; two nonlethal growth-inhibiting biflavones, podocarpusflavone A and 7,4-dimethylamentoflavone; and the ecdysis-inhibiting phytoecdysone, ponasterone A.  相似文献   

12.
The kernel pericarp of a maize (Zea mays L.) inbred, Mp313E, that browns rapidly at milk stage when damaged and that is resistant toAspergillus flavus Link and the dusky sap beetleCarpophilus lugubris Murray compared to a susceptible inbred, SC212M, was examined for differing oxidizing enzymes (peroxidases) and their substrate specificity. Additional pericarp enzymes were constitutively produced by the Mp313E inbred compared to the SC212M inbred, as indicated by gel electrophoresis and isoelectric focusing. These enzymes oxidized relevent pericarp substrates such as ferulic acid. Similar results were seen with two varieties of maize containing theCh mutant gene, which brown upon senescence in that enhanced oxidation of ferulic acid was seen in homogenates of browned pericarp compared to that which was cold-shocked and did not brown. Corn powder that was browned by mixing oxidizing enzymes with corn pericarp components ferulic acid and coumaric acid were typically less preferred/more toxic to caterpillars such asHelicoverpa zea (Boddie) and sap beetles such asC. lugubris. Thus, enhanced browning of maize pericarp can promote resistance to insects and is at least partly influenced by the presence of oxidizing enzymes. This mechanism may also promote resistance to maize pathogens, including those that produce mycotoxins.  相似文献   

13.
Herbivore-induced responses in alfalfa (Medicago sativa)   总被引:4,自引:0,他引:4  
The herbivore-induced response of alfalfa (Medicago sativa) was examined through assays with Spodoptera littoralislarvae and analyses of important secondary substances. In food preference experiments, larvae preferred young undamaged alfalfa plants over plants that had been damaged by feeding larvae 5 and 7 days earlier, while no difference in feeding preferences could be detected 1, 9, and 14 days after damage. This suggests a peak in the herbivore induced resistance of alfalfa approximately one week after initial damage. The induced resistance in young plants was also shown to be systemic, while older flowering plants failed to show increased resistance after defoliation. Larvae gained weight slower and had lower pupal mass when fed damaged alfalfa than when fed undamaged alfalfa. Levels of total saponins were increased in foliage of damaged alfalfa, and detailed analyses of specific saponin components revealed doubled concentrations of 3GlcA,28AraRhaXyl medicagenate (medicagenic acid bidesmoside) and 3GlcAGalRha soyasapogenol B (soyasaponin I). Levels of the flavonoid apigenin (as free aglycone) also were increased in herbivore damaged plants. The herbivore-induced response of alfalfa was significantly weaker than that of cotton: S. littoralis larvae given a choice of undamaged cotton and undamaged alfalfa preferred to feed on cotton, whereas preferences shifted towards alfalfa when plants were damaged.  相似文献   

14.
Variation in induced responses in soybean is shown to be dependent, in part, upon herbivore species. Herbivory by the phloem-feeding three-cornered alfalfa hopper caused increases in the activities of several oxidative enzymes including lipoxygenases, peroxidases, ascorbate oxidase, and polyphenol oxidase. Bean leaf beetle defoliation caused increased lipoxygenase activity, but had little effect upon peroxidase, polyphenol oxidase, ascorbate oxidase, or trypsin inhibitor levels in either field or greenhouse studies. In one field experiment, prior herbivory by the bean leaf beetle subsequently reduced the suitability of foliage to the corn earwormHelicoverpa zea. The contribution of these findings to emerging theories of insect-plant interactions is discussed.  相似文献   

15.
Catalase activity was detected in the midgut tissues and regurgitate of several lepidopteran pests of the tomato plant. Greatest activity in the midgut was detected in larvalHelicoverpa zea, followed bySpodoptera exigua, Manduca sexta, andHeliothis virescens. We present evidence that catalase, in addition to removing toxic hydrogen peroxide, may inhibit the oxidation of plant phenolics mediated by plant peroxidases. Small amounts of larval regurgitate significantly inhibited foliar peroxidase activity via removal of hydrogen peroxide. Treatment of foliage with purified catalase nearly eliminated peroxidase activity and was superior as a larval food source compared to untreated foliage. Tomato foliar peroxidases oxidize an array of endogenous compounds including caffeic acid, chlorogenic acid, rutin, coumaric acid, cinnamic acid, and guaiacol. The oxidized forms of these compounds are potent alkylators of dietary and/or cellular nucleophiles (e.g., thiol and amino functions of proteins, peptides, and amines). When tomato foliar protein was pretreated with peroxidase and chlorogenic acid and incorporated in artificial diet, larval growth was reduced compared to larvae fed untreated protein. Thus, the diminution of peroxidase activity and removal of hydrogen peroxide by catalase may represent an important adaptation to leaf-feeding. The secretion of catalase in salivary fluid during insect feeding is also suggested to be a potential mechanism for reducing hydrogen peroxide formation as an elicitor of inducible plant defenses.  相似文献   

16.
The fate of the tomato foliar phenolic, chlorogenic acid, in the digestive systems of Colorado potato beetleLeptinotarsa decemlineata (Coleoptera: Chrysomelidae) andHelicoverpa tea (Lepidoptera: Noctuidae) is compared. In larvalH. zea and other lepidopteran species previously examined, approximately 35–50% of the ingested chlorogenic acid was oxidized in the digestive system by foliar phenolic oxidases (i.e., polyphenol oxidase and peroxidase) from the tomato plant. The oxidized form of chlorogenic acid, chlorogenoquinone, is a potent alkylator of dietary protein and can exert a strong antinutritive effect upon larvae through chemical degradation of essential amino acids. In contrast, inL. decemlineata less than 4% of the ingested dose of chlorogenic acid was bound to protein. In vitro experiments to determine the influence of pH on covalent binding of chlorogenic acid to protein showed that 30–45% less chlorogenic acid bound to protein at pHs representative of the beetle midgut (pH 5.5–6.5) than at a pH representing the lepidopteran midgut (pH 8.5). At an acidic pH, considerably more of the alkylatable functional groups of amino acids (–NH2, –SH) are in the nonreactive, protonated state. Hence, polyphenol oxidases are unlikely to have significant antinutritive effects against the Colorado potato beetle and may not be a useful biochemical source of resistance against this insect. The influence of feeding by larval Colorado potato beetle on foliar polyphenol oxidase activity in tomato foliage and its possible significance to interspecific competition is also considered.Approved by the Director of the Arkansas Agricultural Experiment Station.  相似文献   

17.
Amaranthus hypochondriacus is a C4 pseudocereal crop capable of producing reasonable grain yields in adverse environmental conditions that limit cereal performance. It accumulates trypsin inhibitors and alpha-amylase inhibitors in seeds and leaves that are considered to act as insect feeding deterrents. Foliar trypsin and alpha-amylase inhibitors also accumulate by treatment with exogenous jasmonic acid (JA) in controlled laboratory conditions. Three field experiments were performed in successive years to test if two nonphytotoxic dosages of JA were capable of inducing inhibitor activity in A. hypochondriacus in agronomical settings, and if this induced response reduced insect herbivory and insect abundance in foliage and seed heads. The performance of JA-treated plants was compared to insecticide-treated plants and untreated controls. The effect of exogenous JA on the foliar levels of six additional putatively defence proteins was also evaluated. Possible adverse effects of JA induction on productivity were evaluated by measuring grain yield, seed protein content, and germination efficiency. The results present a complex pattern and were not consistent from year to year. To some extent, the yearly variability observed could have been consequence of growth under drought versus nondrought conditions. In a drought year, JA-treated plants had lower levels of insect herbivory-derived damage in apical leaves and panicle than control plants, whereas in nondrought years, there was an inconsistent effect on aphids, with no effect on lepidopteran larvae. JA treatments reduced the size of the insect community in seed heads. The effect varied with year. Exogenous JA did not adversely affect productivity, and in the absence of drought stress, the higher dosage enhanced grain yield. Induction of defensive proteins by JA, although sporadic, was more effective in nondrought conditions. The patterns of foliar protein accumulation observed suggest that they may be part of a constitutive, rather than inducible, chemical defense mechanism that is developmentally regulated and critically dependent on the environment. The results emphasize the difficulties that are often encountered when evaluating the performance of chemical elicitors of induced resistance in field settings.  相似文献   

18.
Previously it was reported that significant amounts of the tomato phenolic, chlorogenic acid, were oxidized in the digestive system of generalist feedersSpodoplera exigua andHelicoverpa zea. The covalent binding of the oxidized phenolic (i.e., quinone) to dietary protein exerts a strong antinutritive effect against larvae. In this study, we examined the fate of ingested chlorogenic acid in larvalManduca sexta, a leaf-feeding specialist of solanaceous plants. Significant amounts of chlorogenic acid were bound to excreted protein byM. sexta when larvae fed on tomato foliage. However, in the case ofM. sexta we suggest that the strong alkalinity and detergency of the midgut may minimize the antinutritive effects of oxidized phenolics. The solubility of tomato leaf protein is significantly greater at pH 9.7, representative of the midgut ofM. sexta, than at pH 8.0, representative of the midguts ofH. zea and S. exigua. We suggest that this increase in solubility would compensate for any loss in bioavailability of essential amino acids caused by the covalent binding of chlorogenic acid to amino acids. Furthermore, lysolecithin, a surfactant likely to contribute to the detergent properties of the midgut fluid, was shown to enhance protein solubility as well as inhibit polyphenol oxidase activity. The adaptive significance of gut alkalinity and detergency is discussed.Approved by the Director of the Arkansas Agricultural Experiment Station.  相似文献   

19.
Jasmonic acid (JA) treatment of tomato plants induces several defense-related oxidative enzymes and increases pest resistance in a manner thought to simulate natural insect wounding. In a full-factorial greenhouse experiment, we examined the independent and interactive effects of plant age and exposure to wind-induced mechanical stress (MS), on the ability of JA to induce defense in tomato. In general, treatment of 4-, 6-, and 8-week-old tomato plants with 1 mM JA resulted in the induction of peroxidase and polyphenol oxidase activity and reduced the relative growth rate of first-instar Manduca sexta larvae fed treated leaves, in accordance with other studies. Peroxidase activity increased with plant age and was induced by JA most strongly in older plants. In contrast, polyphenol oxidase activity did not change with plant age and was induced by JA most strongly in young plants. While relative growth rates of M. sexta were lower on older plants overall, JA reduced growth rates most strongly in young plants, in which JA treatment enhanced polyphenol oxidase activity by more than 70%. MS enhanced the activity of peroxidase, but substantially reduced the activity of polyphenol oxidase; the latter most intensely on older plants. M. sexta tended to grow more slowly on MS-treated plants, although this effect was not significant. Thus, reduced polyphenol oxidase activity in MS-treated plants did not lead to an increase in growth rate of M. sexta, possibly because peroxidase activity was still elevated in MS-treated plants. Significant interactions between JA and MS and three-way interactions were not detected for any variable, although the inductive effects of both JA and MS interacted in complex ways with plant age. Our results indicate that resistance traits in tomato are differentially affected by JA and wind exposure and differ in their relative contribution to defense as plants age.  相似文献   

20.
Attraction of both sexes ofIps plastographus maritimus Lanier to bark-phloem-xylem discs of Monterey pine,Pinus radiata D. Don, was demonstrated in the laboratory. Increasing concentrations of male and female volatiles trapped separately and released in a one-to-one ratio decreased attraction for both sexes combined. Attraction of both sexes to volatiles derived from males and females tunneling together in a one-to-one ratio increased with increasing concentration of extract. Attraction of males and females to male-infested discs and to trapped male volatiles increased with increasing dose of males or male extract. Attraction of males and females to female-infested discs and to trapped female volatiles was also demonstrated. The presence of females in male galleries reduced the attractiveness of infested disks to both sexes combined. Increasing numbers of females, tunneling separately from males in the same disc, reduced attraction of males, but not females. When a constant attractive dose of male volatiles was released with increasing doses of female volatiles, there was no difference in response of either sex when female volatiles were present compared with the response to male volatiles alone. When a constant attractive dose of male volatiles was released with increasing concentrations of volatiles derived from males and females tunneling together in a one-to-one ratio, attraction ofI. p. maritimus decreased. Response of females was frequently higher than that of males to the same attractant source. Hence, both sexes produce an attractant, and both sexes tunneling together in the same gallery reduce attraction of males and females to an attractive dose of male attractant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号