共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
从不同泡菜中筛选到6株产γ-氨基丁酸(GABA)的乳酸菌,其中A号乳酸菌产量相对较高,GABA产量为1.261 g/L。A号菌株经16S rDNA鉴定为植物乳杆菌,初步命名为Lactobacillus plantarum WZ011。通过单因素和正交设计方法对其发酵培养基进行优化,得到最佳培养基成分(g/L):葡萄糖13,酵母膏5,谷氨酸钠12,盐酸吡哆醇0.15,无水乙酸钠2,MgSO4.7H2O 0.02,MnSO4.4H2O 0.001,FeSO4.7H2O 0.001,NaCl 0.001。Lactobacillus plantarum WZ011发酵动力学曲线表明GABA的发酵过程大致分为菌体生长与产物生成2个阶段。降低培养基的氮源含量和添加盐酸吡哆醇,谷氨酸钠的利用率提高至99%且GABA生产速率提高了2倍多。优化后GABA最高产量可达5.814 g/L,比优化前提高了79%,且提前了48 h进入GABA生产稳定期。 相似文献
3.
4.
高产γ-氨基丁酸植物乳杆菌的微波诱变育种 总被引:1,自引:0,他引:1
目的利用微波辐照对植物乳酸杆菌进行诱变育种,筛选高产γ-氨基丁酸的正突变菌株。方法以TYG为发酵培养基,37.0℃培养48 h后,测定微波诱变后的植物乳杆菌产γ-氨基丁酸的量。结果诱变后突变菌株W_(462)S_5的γ-氨基丁酸的产量为9.18 g/L,相比于未诱变前的产量(4.64 g/L),提高了97.84%。对正突变菌株W_(462)S_5进行8次传代培养发酵,测得γ-氨基丁酸的产量较为稳定,表明W_(462)S_5是一株遗传性状稳定的正突变菌株。结论微波诱变菌株不仅有操作简单、设备常见、实验条件易于控制等优点,且选育出的菌株具有培养周期短、易于分离纯化、遗传性状稳定等优势。将此方法应用于发酵γ-氨基丁酸生产中,具有一定的研究意义。 相似文献
5.
产γ-氨基丁酸乳酸菌的分离筛选及其主要性能 总被引:1,自引:0,他引:1
γ-氨基丁酸(GABA)是一种天然存在的功能性氨基酸,具有降血压、改善脑功能、镇静、增强长期记忆及提高肝、肾机能等功效.可利用微生物发酵制得GABA.本文从西藏干酪、乳酸饮料、自制泡菜等样品中分离到7株乳酸菌,通过HPLC-AFS法检测GABA含量,筛选出3株GABA高产乳酸菌株,再用GYP培养基30℃恒温厌氧培养48 h后,其GABA产量分别达到383、345和813 μg/mL.通过对产量最高的ML7菌株进行菌落、菌体形态观察和API20A系统生理、生化特性鉴定,初步确定其为发酵乳杆菌(Lactobacillus fermentum). 相似文献
6.
以植物乳杆菌(Lactobacillus plantarum Lb-17)为发酵菌株,以发酵产物γ-氨基丁酸产量为检测参数,对植物乳杆菌发酵产γ-氨基丁酸的发酵培养基进行优化。利用单因素实验和Box-Behnken响应曲面实验对发酵培养基进行优化得到最优培养基为:葡萄糖12.0 g/L、酵母粉18.0 g/L、Ca2+ 55.0 mmol/L、Mg2+ 60.0 mmol/L、L-谷氨酸钠26.0 g/L。优化后,植物乳杆菌Lb-17发酵γ-氨基丁酸产量达8.037 g/L,是优化前5.49 g/L提高1.5倍。 相似文献
7.
为得到一株GABA产量较高的乳酸菌,以酸马奶样品中分离得到的17种乳酸菌为试验菌株,采用高效液相色谱法测其GABA产量,筛选出一株产GABA能力较强的乳酸菌,其编号为43。通过菌株43的16S rDNA基因序列进行PCR扩增分析,对其进行同源性比较并绘制系统发育树,将菌株43鉴定为植物乳杆菌。以菌株43作为出发菌株,对其进行紫外诱变研究。通过诱变处理最终得到一株GABA产量较高的突变菌株43-7,其GABA产量为1.051 g/L,GABA产量比出发菌株提高了43.6%,其经10次传代后稳定性较好。为微生物发酵法生产GABA提供了参考意义。 相似文献
8.
9.
本文以从内蒙古传统发酵食品中分离的80株乳酸菌为研究对象,在GYP培养基中进行高产γ-氨基丁酸(GABA)菌株的筛选后,利用紫外线进行诱变处理,得到GABA突变菌株,并对其进行了菌种鉴定。结果表明,从80株供试乳酸菌中筛选出4株高产γ-氨基丁酸的菌株,再经紫外诱变后得到1株高产突变菌株US3-3。该菌株紫外诱变后,其γ-氨基丁酸含量为2.482 g/L,是诱变前提高1.9倍,并对其多次传代稳定性较好,经16S r DNA序列分析,鉴定为乳酸片球菌(Pediococcus acidilactici)。 相似文献
10.
11.
以短乳杆菌BS2为研究对象,根据已优化的培养条件,使用15L发酵罐进行分批及分批补料发酵实验,在严格控制条件下观察γ-氨基丁酸(GABA)的生物转化过程,克服摇瓶发酵的不足。采用初始pH值为5,发酵期间不控制pH值的条件下进行分批发酵;而后通过发酵期间控制pH值为5的条件下再次进行分批发酵,GABA含量得到有效提高,而谷氨酸钠和葡萄糖分别在32h和44h基本耗尽;然后采用初始pH值为5,发酵期间控制pH值不变的条件下分别在32h补入谷氨酸钠,44h补入葡萄糖,其中,补加550g/L葡萄糖200mL,630g/L谷氨酸钠200mL。补料发酵时,两者流加速度均为11.1mL/min,流加18min。流加结束后培养基中葡萄糖和谷氨酸钠含量达到18g/L以上,基本达到在初始发酵时的质量浓度,而谷氨酸钠在56h基本耗尽,GABA产量达到22.5g/L,最后在56h第2次补加谷氨酸钠,操作同上,GABA产量在104h达到33g/L以上。 相似文献
12.
采用复合诱变的方式提高乳酸菌发酵鹰嘴豆乳产γ-氨基丁酸(γ-aminobutyric acid,GABA)的能力,为开发富含GABA的功能性食品打下基础。以植物乳杆菌M-6作为出发菌株,分别进行紫外、紫外-氯化锂复合诱变,确定紫外照射最佳时间为240 s,氯化锂最佳质量分数为1.25%。采用谷氨酸钠(monosodium glutamate,MSG)平板法、纸层析法、berthelot比色法和高效液相色谱法对突变株的产GABA特性进行检测,筛选到21?株GABA产量高于出发菌株的菌株,其中紫外-氯化锂诱变所得突变株UL-4产量最高,在MRSG培养基(含1%?MSG)和鹰嘴豆乳(含0.2%?MSG)里的产量分别为899.27?mg/L和369.53?mg/L,比出发菌株分别提高64.25%和30.46%,具有良好的遗传稳定性。 相似文献
13.
14.
15.
为了提高γ-氨基丁酸产量,本研究采用紫外诱变和基因组改组技术处理筛选鉴定的产γ-氨基丁酸菌株CLYB1,并对改组后的菌株进行溶血试验和抗生素敏感性试验。结果表明:产γ-氨基丁酸菌株CLYB1为贝莱斯芽孢杆菌Bacillus velezensis,产量为3.95 g/L。对菌株CLYB1进行紫外诱变,得到菌株CLYB1-Y,γ-氨基丁酸产量为10.26 g/L,比出发菌株CLYB1的γ-氨基丁酸产量提高160%。通过基因组改组得到菌株CLYB1-YC,γ-氨基丁酸产量为20.19 g/L,比出发菌株CLYB1提高411%。改组菌株进行菌株溶血试验和抗生素敏感性试验,CLYB1-YC没有溶血环出现,无溶血性,对青霉素、氨苄西林、头孢曲松、庆大霉素、四环素、红霉素、环丙沙星、林可霉素、氯霉素、复方新诺明10种常见抗生素均敏感,菌株安全性良好。贝莱斯芽孢杆菌CLYB1通过基因组改组可以提高γ-氨基丁酸产量,菌株具有更好的应用开发价值。 相似文献
16.
17.
γ-氨基丁酸发酵乳的研制 总被引:1,自引:0,他引:1
通过内蒙古发酵乳制品中分离出的高产γ-氨基丁酸(GABA)的菌株与传统发酵酸奶的菌株(德氏乳杆菌保加利亚亚种和嗜热链球菌)相结合,研制出GABA发酵乳。采用16S rDNA序列分析,对分离到的菌株进行了属种鉴定;通过菌株复配、优化发酵温度和接种量,使最终的产品性状优良,且保证GABA的产量相对较高;并用高效液相色谱技术检测产品中GABA的含量。结果表明:分离出的高产GABA的菌属于植物乳杆菌;当植物乳杆菌、德氏乳杆菌保加利亚亚种和嗜热链球菌比例为0.5∶0.5∶1.5,接种量为2%,发酵温度为43℃时,产品的性状最优,且GABA的产量也相对较高;运用高效液相色谱法测得发酵乳中GABA的含量为1.515 1 g/L。该菌株作为发酵剂,将对今后开发新型功能性乳制品提供基础。 相似文献
18.
从四川泡菜水中分离筛选出一株产γ-氨基丁酸(GABA)能力较强的乳酸菌W1-9,根据菌落和个体形态、生理生化指标及16S r DNA序列的系统鉴定,菌株W1-9为植物乳杆菌(Lactobacillus plantarum)。菌株W1-9在含10 g/L谷氨酸(Glu)的MRS培养基中培养3 d,可产生2.18 g/L GABA。通过对菌株发酵培养基及发酵条件优化,结果表明:以黄瓜汁为发酵培养基,初始p H 5.5,底物谷氨酸钠(MSG)添加量12 g/L,菌液接种量1.2%,在该条件下GABA产量达到7.62 g/L。 相似文献
19.
20.
该研究从东北酸菜中筛选出高产γ-氨基丁酸(GABA)的植物乳杆菌(Lactobacillus plantarum)LAG-1003,并通过单因素试验及响应面法对菌株LAG-1003发酵培养基成分进行优化,以提高该菌产GABA的能力。结果表明,最佳培养基成分组成为:复合碳源(葡萄糖与丁二酸钠比例为3∶1)添加量26 g/L,复合氮源(酵母膏与小米糠比例为1∶1)添加量26 g/L,谷氨酸钠添加量16 g/L。采用优化后的培养基,33℃条件下培养48 h,发酵液中的γ-氨基丁酸的含量为6.15 g/L,是优化前的2.91倍。 相似文献