首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boron carbide films were synthesized by laser ablation technique, using a target of B4C with 99.9% of purity, varying the substrate temperature between room temperature and 650 °C, in order to produce the hexagonal phase (h-BC). Films were grown on (111)-silicon wafers in an ultra high vacuum system with a base pressure in the order of 10− 7 Pa. For the films' growth, an atmosphere of (CH4) at a pressure of 2.5 Pa was used. During the process, the substrate temperature was varied in order to identify the influence of this parameter on the coatings' structure, composition and morphology. XRD analysis did not present peaks of BC, possibly because of the amorphous character of the film that has different phases. Films were characterized by several techniques as in situ Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and ex situ electron diffraction. Results present a concentration of 50 at.% for the sample grown to 650 °C. Electron diffraction showed an interplanar spacing (d(002) = 0.334 nm) and also other hkl reflections have been identified. Lattice parameters calculated from the interplanar spacing a = 0.585 nm and c = 1.2 nm obtained for the sample grown at 650 °C are similar to those reports for hexagonal boron carbide.  相似文献   

2.
Cerium and manganese codoped Ba0.6Sr0.4TiO3 (CeMn-BST) film and pure BST, Ce-BST and Mn-BST films were prepared. Influence of preheating on film crystallization and growing behavior was studied. X-ray diffraction (XRD) reveals that all films mainly grow along (110) orientation and show cubic ABO3 perovskite structures, and the preheating promotes Ce3 + and Mn4 + ions enter into B-sites and substitute Ti4 + ions. Preheating enhances crystallization and causes the strongest crystallization with CeMn-codoping. Atomic force microscopy (AFM) exhibits that films preheated show layered growth, while those not preheated show island growth, which are related to layer number and doping. Therefore, the films preheated show larger permittivities, higher tunabilities, and lower dielectric losses except the pure BST film and higher figures of merit (FOMs). Preheating with CeMn-codoping causes best dielectric properties with 56% tunability, 0.0037–0.0091 loss and near 150 FOM, meeting the needs of tunable microwave applications.  相似文献   

3.
ZnO thin films were grown on the 150 nm-thick RuO2-coated SiO2/Si substrates by electrochemical deposition in zinc nitrate aqueous solution with various electrolyte concentrations and deposition currents. Crystal orientation and surface structure of the electrodeposited ZnO thin films were characterized by X-ray diffraction (XRD) and scanning electron microscopy, respectively. The XRD results show the as-electrodeposited ZnO thin films on the RuO2/SiO2/Si substrates have mixed crystallographic orientations. The higher electrolyte concentration results in the ZnO thin films with a higher degree of c-axis orientation. Moreover, the use of an ultra-thin 5 nm-thick ZnO buffer layer on the RuO2/SiO2/Si substrate markedly improves the degree of preferential c-axis orientation of the electrodeposited ZnO crystalline. The subsequent annealing in vacuum at a low temperature of 300 °C reduces the possible hydrate species in the electrodeposited films. The electrodeposited ZnO thin films on the 5 nm-thick ZnO buffered RuO2/SiO2/Si substrates grown in 0.02 M electrolyte at −1.5 mA with a subsequent annealing in vacuum at 300 °C had the best structural and optical properties. The UV to visible emission intensity ratio of the film can reach 7.62.  相似文献   

4.
Photocatalytic TiO2 films combined with Ag nanoparticles (NPs) embedded-SiO2 films were fabricated by means of a RF magnetron sputtering and subsequent rapid thermal annealing (RTA). X-ray diffraction results show that the TiO2 films have anatase phase when annealed at 500 °C. The Ag NPs were formed by deposition and subsequent annealing at 600 °C. Scanning electron microscopy (SEM) results show that the density of the NPs decreases with increasing Ag film thickness. For example, the average NP diameter varies from ~ 19.3 to ~ 55.9 nm as the film thickness increases from 2 to 12 nm. Transmittance measurements show that as the Ag NP size decreases, the plasmonic peaks shift towards the shorter-wavelength region and become narrower. It is further shown that under UV-illumination (352 nm), all the TiO2 films with the Ag NPs show higher methylene blue decomposition rates compared to the TiO2 only films and the TiO2 films with Ag NP (a 7 nm-thick Ag film) show the best decomposition rate among the samples possibly due to the combined effects of optimized localized field amplification and radiative efficiency.  相似文献   

5.
Titanium-magnesium nitride coatings (Ti,Mg)N were deposited on steels and silicon substrates by hybrid reactive arc evaporation-magnetron sputtering process from cathodic Ti and sputter Mg targets in an argon/nitrogen gas mixture. X-ray diffraction analyses (XRD) of as-deposited coatings with various Mg/Ti atomic ratios gave evidence of a fcc TiN-like structure strongly oriented in the [111] direction. The TiN lattice parameter increases with the addition of Mg resulting from the substitution of Ti atoms by Mg ones. Optical investigations by spectrophotometry revealed that Mg addition to TiN leads to a change in colour from golden through coppery and violet to grey. Nanoindentation measurements showed that increasing Mg content does not alter the hardness of coatings. As-deposited films were annealed in air from 450 to 750 °C with a 100 °C step. XRD and Raman analyses revealed the formation of rutile TiO2 and MgTiO3 phases. Secondary neutral mass spectrometry measurements were performed to study the elemental depth profiles after air annealing. A diffusion of Mg atoms towards the film surface was evidenced above 650 °C, leading to the formation of the MgTiO3 phase. However, thermogravimetric measurements showed that this oxide phase did not protect the films against high temperature oxidation. On the contrary, below 650 °C Mg affords to TiN a beneficial protective effect, able to reduce the oxidation kinetics by half.  相似文献   

6.
Ferroelectric thin films such as BST, PZT and PLZT are extensively being studied for the fabrication of DRAMS since they have high dielectric constant. The large and reversible remnant polarization of these materials makes it attractive for nonvolatile ferroelectric RAM application. In this paper we report the characterization of Ba0.7Sr0.3TiO3 (BST) thin films grown by pulsed laser ablation on oxide electrodes. The structural and electrical properties of the fabricated devices were studied. Growth of crystalline BST films was observed on La0.5Sr0.5CoO3 (LSCO) thin film electrodes at relatively low substrate temperature compared to BST grown on PtSi substrates. Electrical characterization was carried out by fabricating PtSi/LSCO/BST/LSCO heterostructures. The leakage current of the heterostructure is studied and a band structure is modeled based on the transport properties of the heterostructure. The dielectric constant of the BST film is found to be 630 at 100 kHz with a loss tangent of 0.04. The capacitance voltage characteristics show high tunability for BST thin films.  相似文献   

7.
Hafnium oxide (HfO2) thin films were grown on silicon and quartz substrates by radio frequency reactive magnetron sputtering at temperature < 52 °C. X-ray diffraction of the films showed no structure, suggesting that the films grown on the substrates are amorphous. The optical properties of these films have been investigated using spectroscopic ellipsometry with wavelength range 200-1400 nm and ultraviolet-visible spectrophotometer techniques. Also, the effects of annealing temperatures on the structure and optical properties of the amorphous HfO2 (a-HfO2) have been investigated. The films appeared to be monoclinic structure upon high temperature (1000 °C) annealing as confirmed by X-ray diffraction. The results show that the annealing temperature has a strong effect on the optical properties of a-HfO2 films. The optical bandgap energy of the as-deposited films is found to be about 5.8 eV and it increases to 5.99 eV after the annealing in Ar gas at 1000 °C. The further study shows that the measurement of the optical properties of the amorphous films reveals a high transmissivity (82%-99%) and very low reflectivity (< 8%) in the visible and near-infrared regions at any angle of incidence. Thus, the amorphous structure yields HfO2 film of significantly higher transparency than the polycrystalline (68%-83%) and monoclinic (78%-89%) structures. This means that the a-HfO2 films could be a good candidate for antireflection (AR) optical coatings.  相似文献   

8.
High quality thin films of TbMnO3 were grown by pulsed laser deposition on orthorhombicYAlO3 (1 0 0). The interface and surface roughness of a 55 nm thick film were probed by X-ray reflectometry and atomic force microscopy, yielding a roughness of 1 nm. X-ray diffraction revealed untwinned films and a small mosaic spread of 0.04° and 0.2° for out-of-plane and in-plane reflections, respectively. This high degree of epitaxy was also confirmed by Rutherford backscattering spectrometry. Using polarized neutron diffraction we could identify a magnetic structure with the propagation vector (0 0.27 0), identical to the bulk magnetic structure of TbMnO3.  相似文献   

9.
Pt/Ba0.8Sr0.2TiO3 (BST)/Pt capacitors fabricated by the sol–gel process generally show abnormally high leakage currents. In this paper, we report the reduction of this leakage current in multilayered sol–gel Pt/BST/Pt thin film capacitors. The multilayered structure also provided the flexibility of adjusting the dielectric constant of the film. The thin films were fabricated by a step-by-step annealing scheme at 750 °C except that the top and bottom layers were annealed at less than 750 °C. The observed results are explained by an amorphous/polycrystalline structure, which was confirmed by scanning electron microscopy and X-ray diffraction analysis.  相似文献   

10.
Nanocrystalline, uniform, dense, and adherent cerium oxide (CeO2) thin films have been successfully deposited by a simple and cost effective spray pyrolysis technique. CeO2 films were deposited at low substrate and annealing temperatures of 350 °C and 500 °C, respectively. Films were characterized by differential thermal analysis, X-ray diffraction, scanning electron microscopy, atomic force microscopy; two probe resistivity method and impedance spectroscopy. X-ray diffraction analysis revealed the formation of single phase, well crystalline thin films with cubic fluorite structure. Crystallite size was found to be in the range of 10-15 nm. AFM showed formation of smooth films with morphological grain size 27 nm. Films were found to be highly resistive with room temperature resistivity of the order of 107 Ω cm. Activation energy was calculated and found to be 0.78 eV. The deposited film showed high oxygen ion conductivity of 5.94 × 10−3 S cm−1 at 350 °C. Thus, the deposited material shows a potential application in intermediate temperature solid oxide fuel cells (IT-SOFC) and might be useful for μ-SOFC and industrial catalyst applications.  相似文献   

11.
The study is aimed at comparing the oxidation behavior of the stoichiometric CrN films deposited by continuous dc magnetron sputtering (dcMS), mid-frequency pulsed dc magnetron sputtering (PMS), and modulated pulsed power (MPP) magnetron sputtering techniques in a closed field unbalanced magnetron sputtering system. These as-deposited CrN films exhibited a cubic structure and similar stoichiometric compositions, but with different microstructures and residual stresses. After annealing in the ambient air from 600 to 1000 °C, the changes in the crystal phase, microstructure, and hardness of the films were characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy line scan, and nanoindentation. The oxidation activation energies of the films were calculated using Arrhenius equation. It was found that the MPP CrN film exhibited superior oxidation resistance than dcMS and PMS CrN films. After annealing at 900 °C, the MPP CrN film exhibited an extremely dense structure and the cubic phase was well maintained. On the other hand, the dcMS and PMS CrN films were severely oxidized into a porous structure with the development of β-Cr2N and Cr2O3 phases and a rapid degradation of the cubic phase after 700 and 800 °C, respectively. The results indicate that all films showed a parabolic oxidation rate below 900 °C. The oxidation activation energies for the dcMS, PMS and MPP CrN films are 116 kJ/mol, 141 kJ/mol, and 195 kJ/mol, respectively. The better oxidation resistance of the MPP CrN film is attributed to its dense microstructure and low residual stress.  相似文献   

12.
Tin dioxide thin films were prepared successfully by pulsed laser deposition techniques on glass substrates. The thin films were then annealed for 30 min from 50 °C to 550 °C at 50 °C intervals. The influence of the annealing temperature on the microstructure and optical properties of SnO2 thin films was investigated using X-ray diffraction, optical transmittance and reflectance measurements. Various optical parameters, such as optical band gas energy, refractive index and optical conductivity were calculated from the optical transmittance and reflectance data recorded in the wavelength range 300-2500 nm. We found that the SnO2 thin film annealed at temperatures up to 400 °C is a good window material for solar cell application. Our experimental results indicated that SnO2 thin films with the high optical quality could be synthesized by pulsed laser deposition techniques.  相似文献   

13.
Tantalum oxide thin films were prepared by using reactive dc magnetron sputtering in the mixed atmosphere of Ar and O2 with various flow ratios. The structure and O/Ta atom ratio of the thin films were analyzed by X-ray diffraction and X-ray photoelectron spectroscopy (XPS). The optical and dielectric properties of the Ta2O5 thin films were investigated by using ultraviolet-visible spectra, spectral ellipsometry and dielectric spectra. The results reveal that the structure of the samples changes from the amorphous phase to the β-Ta2O5 phase after annealing at 900 °C. The XPS analysis showed that the atomic ratio of O and Ta atom is a stoichiometric ratio of 2.50 for the sample deposited at Ar:O2 = 4:1. The refractive index of the thin films is 2.11 within the wavelength range 300-1000 nm. The dielectric constants and loss tangents of the Ta2O5 thin films decrease with the increase of measurement frequency. The leakage current density of the Ta2O5 thin films decreases and the breakdown strength increases with the increase of Ar:O2 flow ratios during deposition.  相似文献   

14.
Thin films of lithium cobalt oxide were deposited on Pt or Pt/Ti/quartz glass substrates by radio frequency (RF) magnetron sputtering at the substrate temperatures from room temperature to 500 °C. As the substrate temperature increased, the film structure changed from amorphous structure to crystallinity with a strong (003) texture as characterized by X-ray diffraction. The surface morphology and cross-section were observed using scanning electron microscopy. It was found that the films tended to crack at a high substrate temperature. Charge-discharge tests of these films were conducted and compared. The different electrochemical characteristics of these films were attributed to the modified crystallography, morphology, and thermal stress. The LiCoO2 film deposited at 400 °C showed a well-defined 4.0 V voltage plateau on charge and a 3.9 V plateau on discharge, and delivered 54.5 μAh/cm2 μm at the first discharge capacity, with good cycling performance, giving evidence that such films could be used as the thin film cathodes for lithium microbatteries.  相似文献   

15.
A novel sandwich structure of Ba0.7Sr0.3TiO3/Cr/Ba0.7Sr0.3TiO3 (BST/Cr/BST) was sputtered onto Pt/Ti/SiO2/Si substrate. With the insertion of a Cr layer, the leakage currents are decreased and the thermal stability of the specimens is enhanced. Temperature coefficient of capacitance (TCC) of specimens with BST(200 nm)/Cr(2 nm)/BST(200 nm) multifilms can achieve about 83% lower than those with BST (400 nm) monolayer. However, the dielectric constant of the BST(200 nm)/Cr(2 nm)/BST(200 nm) multifilms decreases to about 37% of that BST monolayer. The leakage current densities under an electric field of 125 kV/cm at 90 °C are 4 × 10− 4 A/cm2 and 9 × 10− 1 A/cm2 for BST (200 nm)/Cr (2 nm)/BST (200 nm) and monolayer BST (400 nm), respectively. X-ray diffraction results indicate the formation of a CrO3 secondary phase after annealing at 700 °C or above in O2 atmosphere. The root causes for the improvement of leakage currents and thermal stability with the insertion of nano-Cr interlayer are explored. The results show the insertion of Cr-nanolayer improves the electric properties for application in capacitors.  相似文献   

16.
This study investigates the temperature dependence of zinc oxide (ZnO) grown on polyestersulfone (PES) flexible substrates using the dual plasma-enhanced metal–organic chemical vapor deposition (DPEMOCVD) system. The proposed method uses a direct voltage (DC) and radio-frequency (RF) plasma system. The group-VI precursor, oxygen (O2), can be completely ionized by the DC plasma system. The effect of optimal DC plasma power on ZnO thin films is thoroughly investigated using X-ray diffraction (XRD). The experimental results indicate that the crystalline structure and optical and electrical properties of ZnO thin films grown on PES substrates are dependent on the deposition temperature. The optimum deposition temperature for ZnO thin films deposited on PES substrates is 185 °C, whereas the DC and RF plasma power is 1.8 W and 350 W, respectively. Additionally, the wettability characteristic regarding the UV irradiation time was assessed by measuring the water contact angle. Under the UV irradiation for 60 min, the ZnO film grown at 185 °C represents a low contact angle of 5°, which approaches to a superhydrophilic surface.  相似文献   

17.
CaCu3Ti4O12 (stoichiometric) and Ca1.1Cu2.9Ti4O12 (non-stoichiometric) thin films have been prepared by the soft chemical method on Pt/Ti/SiO2/Si substrates, and their electrical and dielectric properties have been compared as a function of the annealing temperature. The crystalline structure and the surface morphology of the films were markedly affected by the annealing temperature and excess calcium. The films show frequency-independent dielectric properties at room temperature which is similar to those properties obtained in single-crystal or epitaxial thin films. The room temperature dielectric constant of the 570-nm-thick CCTO thin films annealed at 600 °C at 10 kHz was found to be 124. The best non-ohmic behavior (α = 12.6) presented by the film with excess calcium annealed at 500 °C. Resistive hysteresis on the I-V curves was observed which indicates these films can be used in resistance random access memory (ReRAM).  相似文献   

18.
Stoichiometric compound of copper indium sulfur (CuIn5S8) was synthesized by direct reaction of high purity elemental copper, indium and sulfur in an evacuated quartz tube. The phase structure of the synthesized material revealed the cubic spinel structure. The lattice parameter (a) of single crystals was calculated to be 10.667 Å. Thin films of CuIn5S8 were deposited onto glass substrates under the pressure of 10−6 Torr using thermal evaporation technique. CuIn5S8 thin films were then thermally annealed in air from 100 to 300 °C for 2 h. The effects of thermal annealing on their physico-chemical properties were investigated using X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), optical transmission and hot probe method. XRD studies of CuIn5S8 thin films showed that as-deposited films were amorphous in nature and transformed into polycrystalline spinel structure with strong preferred orientation along the (3 1 1) plane after the annealing at 200 °C. The composition is greatly affected by thermal treatment. From the optical transmission and reflection, an important absorption coefficient exceeds 104 cm−1 was found. As increasing the annealing temperature, the optical energy band gap decreases from 1.83 eV for the as-deposited films to 1.43 eV for the annealed films at 300 °C. It was found that CuIn5S8 thin film is an n-type semiconductor at 300 °C.  相似文献   

19.
Room temperature photoelectrochemistry was used to characterise oxide phases grown during the initial stages of oxidation of the ferritic stainless steel AISI441 at 650°C and 850°C in synthetic air or in water vapour. Grazing incidence X-ray diffraction and Raman spectroscopy were additionally used to discuss PEC results. Haematite Fe2O3 (∼2.0 eV), chromia Cr2O3 (3.0 and 3.5 eV) and their mutual solid solution (∼ 2.5 eV) were detected by their respective bandgap values determined from photocurrent vs. energy curves. The Cr/Fe ratio of the films increased with time/temperature and was higher in air-grown than in H2O-grown oxides. Observation of photocurrent vs. potential curves indicated that chromia was N-type in all specimens, resulting from thermodynamic equilibrium with the metallic substrate and not with the gas phase.  相似文献   

20.
Ferroelectric PMN-PT thin films with a thickness of 600 nm were epitaxially grown on buffered Si (0 0 1) substrates at a substrate temperature that ranged from 550 to 700 °C using pulsed laser deposition (PLD). LaNiO3 (LNO) electrode thin films with a resistivity of ∼1900 μΩ cm were epitaxially grown on CeO2/YSZ buffered Si (0 0 1) substrates. The PMN-PT thin films grown at 600 °C on LNO/CeO2/YSZ/Si substrates had a pure perovskite and epitaxial structure. The PMN-PT films exhibited a high dielectric constant of about 1818 and a low dissipation factor of 0.04 at a frequency of 10 kHz. Polarization-electric-field (P-E) hysteresis characteristics, with a remnant polarization of 11.1 μC/cm2 and a coercive field of 43 kV/cm, were obtained in the epitaxial PMN-PT films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号