首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly ordered TiO2 nanotube arrays prepared by anodic oxidation have attracted increasing research interests due to their promising applications in many scientific areas. To the best of our knowledge, a factor limiting the application of TiO2 nanotube arrays was their long sustaining reaction time by anodic oxidation, usually lasting 6-12 h and even longer when synthesizing thicker nanotubular layers. In the present paper, we reported for the first time a facile but effective approach to accelerate the anodic formation of TiO2 nanotube arrays by proper addition of sodium carbonate (Na2CO3) into the anodization electrolyte. We adopted the 0.3 M NH4F + 0.03 M Na2CO3 + EG (ethylene glycol) + 3.0 vol.% H2O electrolyte and the average growth rate of the nanotubes achieved in our experiments could be accelerated to 1100 nm/min. The possible mechanism of the rapid electrochemical process was also presented.  相似文献   

2.
Transparent and surfactant-free TiO2 sols containing anatase nanocrystals were prepared by the hydrothermal treatment of water-soluble peroxotitanium acid (PTA) at a temperature of 120 °C. The TiO2 nanocrystals were characterized by transmission electron microscopy (TEM). The TEM results indicated that the TiO2 nanocrystals were nanorod-like with diameters of less than 7 nm after the subsequently hydrothermal treatment. A gradient layer between the transparent fluorine doped SnO2 (FTO) layer and the porous titanium dioxide nanocrystalline film for dye-sensitized solar cells (DSSCs) photoelectrodes, was made with the as-prepared TiO2 sols. The TiO2 gradient layers were characterized by field-emission scanning electron microscopy and UV-vis absorption spectrometry. After the gradient layer deposition on the FTO coated glass, the composite multilayer film exhibited the visible light transmittance of 80% which approached to that of bare FTO glass. The photo-to-electric energy conversion efficiency of the N719 dye-sensitized solar cell had significantly improved from 4.2% to 5.6% in the presence of the compact layer between FTO and the porous TiO2 nanocrystalline film under of AM1.5 illumination (100 mW/cm2). The remarkable improvements in short-circuit current for the DSSCs was due to the effective gradient layer at the FTO-TiO2 interface which prevented direct contact of electrolytes with FTO and consequently reduced charge recombination losses.  相似文献   

3.
In this study the influence of two different calcination temperatures 80 °C and 450 °C on the structural, optical and charge transport properties of rutile TiO2 nanocrystals has been investigated. TiO2 nanocrystals have been prepared at low temperature by a simple hydrolysis method using titanium tetrachloride as starting precursor. The results of X-ray diffraction (XRD) showed that the prepared nanocrystals have a rutile tetragonal crystalline structure. Specific surface area of 80 °C and 450 °C calcinated rutile TiO2 nanocrystals are 25.38 × 105 cm2/g and 7.61 × 105 cm2/g respectively, which has been calculated by X-ray diffraction data. Williamson-Hall plot results indicate the presence of compressive strain at 80 °C and tensile strain at 450 °C. Ultraviolet-visible (UV-vis) absorption spectroscopy is used to calculate the band gap of the material and the shift in absorption edge and it has been observed that the absorption spectra are strongly modified by the calcination temperature. The red-shift in photoluminescence (PL) is attributed to the change in strain from compressive to tensile. Photoconductivity (PC) measurements showed that capture cross-section of 80 °C (R1) and 450 °C (R2) calcinated rutile nanocrystals are 55.10 × 10−10 and 39.50 × 10−10 cm2 respectively. High value of electron life-time, low value of radiative recombination and a four order increase in photogenerated charge carriers have been reported for the rutile TiO2 nanocrystals calcinated at 450 °C.  相似文献   

4.
In this work, TiO2 nanorods were prepared by a hydrothermal process and then Bi2MoO6 nanoparticles were deposited onto the TiO2 nanorods by a solvothermal process. The nanostructured Bi2MoO6/TiO2 composites were extensively characterized by X-ray diffraction, scanning and transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis diffuse reflectance spectroscopy. The photocatalytic activity of the Bi2MoO6/TiO2 composites was evaluated by degradation of methylene blue. The Bi2MoO6/TiO2 composites exhibit higher catalytic activity than pure Bi2MoO6 and TiO2 for degradation of methylene blue under visible light irradiation (λ > 420 nm). Further investigation revealed that the ratio of Bi2MoO6 to TiO2 in the composites greatly influenced their photocatalytic activity. The experimental results indicated that the composite with Bi2MoO6:TiO2 = 1:3 exhibited the highest photocatalytic activity. The enhancement mechanism of the composite catalysts was also discussed.  相似文献   

5.
The composite ceramics of Ba0.55Sr0.4Ca0.05TiO3-CaTiSiO5-Mg2TiO4 (BSCT-CTS-MT) were prepared by the conventional solid-state route. The sintering performance, phase structures, morphologies, and dielectric properties of the composite ceramics were investigated. The BSCT-CTS-MT ceramics were sintered at 1100 °C and possessed dense microstructure. The dielectric constant was tailored from 1196 to 141 as the amount of Mg2TiO4 increased from 0 to 50 wt%. The dielectric constant and dielectric loss of 40 wt% Ba0.55Sr0.4Ca0.05TiO3-10 wt% CaTiSiO5-50 wt% Mg2TiO4 was 141 and 0.0020, respectively, and the tunability was 8.64% under a DC electric field of 8.0 kV/cm. The Curie peaks were broadened and depressed after the addition of CaTiSiO5. The optimistic dielectric properties made it a promising candidate for the application of tunable capacitors and phase shifters.  相似文献   

6.
Amorphous Ni-B/TiO2 electrodes were successfully prepared by electroless plating. Highly ordered TiO2 nanotube arrays fabricated by anodic oxidation were employed as substrate and loaded with Ni-B alloy by electroless plating. The phase formation, microstructures and catalytic activity of electrodes were investigated by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and electrochemistry analyzer, respectively. The results show that Ni-B/TiO2 electrodes with an average particle size of 200 nm present a typical amorphous structure of Ni and B, and have high catalytic activity for methanol electrooxidation in alkaline medium. The peak current density in cyclic voltammetry (CV) curves reaches 360 mA cm−2 in the solution with 0.5 mol L−1 methanol, much higher than that of Ni-B/Ti electrode. With the methanol concentration increasing to 1.5 mol L−1, the peak current density increases to 488 mA cm−2, after which it remains almost constant. The Ni-B/TiO2 electrodes are relatively stable according to catalytic lifetime test; the peak current density remains 72.1% of the original value after 1300 times cycles. The amorphous Ni-B/TiO2 electrode should be a promising candidate for direct methanol fuel cell.  相似文献   

7.
Nano-particles of homogeneous solid solution between TiO2 and Fe2O3 (up to 10 mol%) have been prepared by mechanochemical milling of TiO2 and yellow Fe2O3/red Fe2O3/precipitated Fe (OH)3 using a planetary ball mill. Such novel solid solution cannot be prepared by conventional co-precipitation technique. A preliminary investigation of photocatalytic activity of mixed oxide (TiO2/Fe2O3) on photo-oxidation of different organic dyes like Rhodamine B (RB), Methyl orange (MO), Thymol blue (TB) and Bromocresol green (BG) under visible light (300-W Xe lamp; λ > 420 nm) showed that TiO2 having 5 mol% of Fe2O3 (YFT1) is 3-5 times higher photoactive than that of P25 TiO2. The XRD result did not show the peaks assigned to the Fe components (for example Fe2O3, Fe3O4, FeO3, and Fe metal) on the external surface of the anatase structure in the Fe2O3/TiO2 attained through mechanochemical treatment. This meant that Fe components were well incorporated into the TiO2 anatase structure. The average crystallite size and particle size of YFT1 were found to be 12 nm and 30 ± 5 nm respectively measured from XRD and TEM conforming to nanodimensions. Together with the Fe component, they absorbed wavelength of above 387 nm. The band slightly shifted to the right without tail broadness, which was the UV absorption of Fe oxide in the Fe2O3/TiO2 particle attained through mechanochemical method. This meant that Fe components were well inserted into the framework of the TiO2 anatase structure. EPR and magnetic susceptibility show that Fe3+ is in low spin state corresponding to μB = 1.8 BM. The temperature variation of μB shows that Fe3+ is well separated from each other and does not have any antiferromagnetic or ferromagnetic interaction. The evidence of Fe3+ in TiO2/Fe2O3 alloy is also proved by a new method that is redox titration which is again support by the XPS spectrum.  相似文献   

8.
TiO2 thin films were deposited on silicon wafer substrates by low-field (1 < B < 5 mT) helicon plasma assisted reactive sputtering in a mixture of pure argon and oxygen. The influence of the positive ion density on the substrate and the post-annealing treatment on the films density, refractive index, chemical composition and crystalline structure was analysed by reflectometry, Rutherford backscattering spectroscopy (RBS) and X-ray diffraction (XRD). Amorphous TiO2 was obtained for ion density on the substrate below 7 × 1016 m− 3. Increasing the ion density over 7 × 1016 m− 3 led to the formation of nanocrystalline (~ 15 nm) rutile phase TiO2. The post-annealing treatment of the films in air at 300 °C induced the complete crystallisation of the amorphous films to nanocrystals of anatase (~ 40 nm) while the rutile films shows no significant change meaning that they were already fully crystallised by the plasma process. All these results show an efficient process by low-field helicon plasma sputtering process to fabricate stoichiometric TiO2 thin films with amorphous or nanocrystalline rutile structure directly from low temperature plasma processing conditions and nanocrystalline anatase structure with a moderate annealing treatment.  相似文献   

9.
Ferroelectric Bi3.25La0.75Ti3O12 (BLT) nanotubes were synthesized by sol-gel technique using nanochannel porous anodic aluminum oxide (AAO) templates, and were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). BLT nanotubes with diameter of around 240 nm and the wall thickness of about 25 nm exhibited a single orthorhombic perovskite structure and highly preferential crystal growth along the [1 1 7] orientation, which have smooth wall morphologies and well-defined diameters corresponding to the diameter of the applied template. The formation mechanism of BLT nanotubes was discussed.  相似文献   

10.
In order to obtain the TiO2 films with high transmittance and superhydrophilicity without UV irradiation, porous TiO2/SiO2 bi-layer films were prepared by spin coated SiO2 sol and TiO2 sol including polyethylene glycol 2000 (PEG 2000) onto glass and subsequent calcination at 550 °C. Meanwhile, factors that affect the TiO2/SiO2 bi-layer films transmittance and superhydrophilicity were investigated in details by observing their surface morphologies and measuring their water contact angles (WCAs), spreading time and transmittances. The results indicated that the as-prepared TiO2/SiO2 bi-layer film showed superhydrophilicity without UV irradiation when 0.5 wt.% PEG 2000 was added in TiO2 sol. At the same time, its maximum transmittance was as high as 92.3%. The spreading time was only about 0.16 s. More importantly, the resultant film had an excellent stability of the superhydrophilic property.  相似文献   

11.
The in situ oxidative template polymerization of aniline was performed successfully on the surface of negatively charged titania (TiO2) nanoparticles with a mean diameter of 40 nm using ammonium persulfate and a Chem-Solv solution at pH 1 and 25 °C. SEM showed that the resulting polyaniline (PANI)/TiO2 composites were well dispersed in solution due to the electrostatic repulsion force. Ultraviolet/visible spectroscopy, thermogravimetric analysis, Fourier-transform infrared spectroscopy, and cyclic voltammetry showed that the optical, thermal, and electrical properties of PANI/TiO2 composites were quite different from those of pure PANI or TiO2, which was attributed to the strong interaction between the two components. The conductivity of the PANI/TiO2 composite was estimated to be 0.91 × 10−1 S/cm at 25 °C in the range of semiconductor.  相似文献   

12.
Nanocrystalline titanium dioxide films were formed on frosted and clear borosilicate glass with a large surface area (12 × 22 cm) using doctor blade and spray coating techniques. The films were subjected to a high temperature treatment at 550 °C. X-ray diffraction (XRD) analysis indicated that the TiO2 films contain only the anatase phase. Optical microscopy was used to determine the morphology changes after the deposition of each layer. Scanning electron microscopy (SEM) was used to study the films surface morphology. The large scale TiO2 films produced showed a high photocatalytic activity which was evaluated by the degradation of methyl orange (MO) in aqueous solution (10 mg L− 1) under illumination of a UV light source with an overall irradiance of 0.9 mW cm− 2. UV-visible spectrophotometry was used to monitor the degradation of MO through the decrease of the main absorbance peak at 464 nm. The results demonstrated that a complete decomposition of MO could be achieved after 2 h of UV irradiation.  相似文献   

13.
TiO2 nanotubes (NTs) in powder form were synthesized by a facile electrochemical process in a perchlorate-containing electrolyte. Transmission electron microscopy results indicate that the TiO2 NT-powder is in an amorphous structure and has outer diameter of 20 nm and tube-wall thickness of 5 nm. X-ray diffraction analysis reveals that phase composition of the annealed TiO2 NT-powders is related to the heat treatment scheme. Methyl orange was employed as a representative dye pollutant to evaluate the ultraviolet photocatalytic activity of the TiO2 NT-powders. It was found that different post heat treatment schemes affect greatly the photocatalytic activities of the TiO2 NT-powders, which should be ascribed to the changes in phase structural and morphological properties of the TiO2 NT-powders. These results indicate that there should be a balance between crystal phase and nanotubular configuration for achieving the best photocatalytic activity of the TiO2 nanotube powders.  相似文献   

14.
Anatase titanium dioxide (TiO2) mesoporous microspheres with core-shell and hollow structure were successfully prepared on a large scale by a one-step template-free chemical vapor deposition method. The effects of various reaction conditions on the morphology, composition and structure of the products were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) technique and photoluminescence (PL) method. The results indicate that the product near the source was composed of core-shell structure TiO2 microspheres with diameters from 3 to 5 μm. With increasing the distance between the source materials and the substrate, the hollow TiO2 spheres with 1-2 μm dominant the products. A localized Ostwald ripening can be use to explain the formation of core-shell and hollow structures, and the size of the initial TiO2 solid nanoparticles plays an important role in determining the evacuation manner of the solid in the ripening-induced hollowing process. The surface area of TiO2 hollow microspheres determined by the adsorption isotherms was measured to be 74.67 m2/g. X-ray photoelectron spectroscopy (XPS) analysis revealed that the O-H peaks of hollow structures have a chemical shift compared with the core-shell structures. The optical property of the products was also discussed.  相似文献   

15.
We here report that the abrasion resistance of nanoparticulate TiO2 self-cleaning layers can be highly enhanced without a considerable loss of photocatalytic capability. TiO2 coating layers solution-deposited onto the glass substrate were irradiated by a pulsed ultraviolet (UV) laser at 355 nm, which modified the surface morphologies via laser-induced local melting of TiO2 nanoparticles. The surface hardness, measured by pencil scratch test, improved with increasing laser power (P). While an unmodified TiO2 layer revealed a hardness of 6B, it increased to 2H after the surface was irradiated at P = 0.3 W. Almost all of the stearic acid deposited on an unmodified sample disappeared after UV exposure for 12 h. The photocatalytic decomposition was slowed down on laser-irradiated TiO2 surfaces and this is attributed to the reduction of specific surface areas as a result of the morphological modifications. However, a TiO2 layer hardened to 2H still exhibited fairly good photocatalytic activity, decomposing more than 75% of the stearic acid after exposure for the same duration.  相似文献   

16.
Air-cathodes were used to produce TiO2 nanotube arrays. The effects of pH, voltage and degradation of air-cathode in tailoring the morphologies of TiO2 nanotube arrays were investigated. Preliminary results show that TiO2 nanotubes could be formed and are comparable to those produced by platinum electrodes under similar conditions. The lengths and diameters of TiO2 nanotube arrays obtained are in the range of 1.0-2.2 μm and 40-150 nm, respectively. It is found that the rate of formation of the nanotubes is closely related to the pH of the solution. Air-cathodes are found to have relative low values of mass loss rates.  相似文献   

17.
(Bi0.5Na0.5)0.94Ba0.06TiO3 + x wt% Dy2O3 with x = 0-0.3 ceramics were synthesized by conventional solid-state processes. The effects of Dy2O3 on the microstructure, the piezoelectric and dielectric properties were investigated. X-ray diffraction pattern confirmed that the coexistence of tetragonal and rhombohedral phases in the (Bi0.5Na0.5)0.94Ba0.06TiO3 composition was not changed by adding 0.05-0.3 wt% Dy2O3. SEM images indicate that all the ceramics have pore-free microstructures with high density, and that doping of Dy2O3 inhibits the grain growth of the ceramics. The addition of Dy2O3 shows the double effects on decreasing the piezoelectric and dielectric properties for 0 < x < 0.15 when Dy3+ ions substitute B-site Ti4+ ions, and increasing the properties for 0.15 < x < 0.3 when Dy3+ ions enters into A-site of the perovskite structure. The optimum electric properties of piezoelectric constant d33 = 170 pC/N and the dielectric constant ?r = 1900 (at a frequency of 1 kHz) are obtained at x = 0.3.  相似文献   

18.
Five series of Mo2FeB2 based cermets with Mn addition between 0 and 10 wt% in 2.5 wt% increments were prepared by reaction sintering process. The effect of Mn content on the microstructure and crystalline phases was investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and X-ray diffraction (XRD). Hardness (HRA) and transverse rupture strength (TRS) were also measured. Mn addition improved the wettability of the Fe binder phase on the Mo2FeB2 hard phase, which resulted in a decrease in porosity and Mo2FeB2 grain size and an increase in phase uniformity. No Fe–Mn intermetallic compounds or other intermetallic compounds were detected with increasing Mn content. The TRS increased with increasing Mn content until it reached the maximum value at 10.0 wt% Mn addition. The hardness slightly increased with increasing Mn content firstly and then turned to decrease with increasing Mn content. The highest hardness was obtained for cermets with 5.0 wt% Mn addition.  相似文献   

19.
Alumina matrix composites containing 5 and 10 wt% of ZrO2 were sintered under 100 MPa pressure by spark plasma sintering process. Alumina powder with an average particle size of 600 nm and yttria-stabilized zirconia with 16 at% of Y2O3 and with a particle size of 40 nm were used as starting materials. The influence of ZrO2 content and sintering temperature on microstructures and mechanical properties of the composites were investigated. All samples could be fully densified at a temperature lower than 1400 °C. The microstructure analysis indicated that the alumina grains had no significant growth (alumina size controlled in submicron level 0.66-0.79 μm), indicating that the zirconia particles provided a hindering effect on the grain growth of alumina. Vickers hardness and fracture toughness of composites increased with increasing ZrO2 content, and the samples containing 10 wt% of ZrO2 had the highest Vickers hardness of 18 GPa (5 kg load) and fracture toughness of 5.1 MPa m1/2.  相似文献   

20.
Flower-like, nanostructured, N-doped TiO2 (N-TiO2) films were fabricated using a low-temperature hydrothermal method. The morphology, crystalline phase, and composition of these flower-like nanostructured films were characterized systematically by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and UV-vis spectroscopy. The photoelectrochemical properties of N-TiO2 films in 0.5 M NaCl solution were evaluated under illumination and in the dark through electrochemical measurements. Flower-like nanostructured TiO2 films exhibited a drastically enhanced photocurrent in the UV light region and a notable absorption in the visible light region (600-700 nm). The negative shifts of the electrode potentials of 316L stainless steel coupled with N-doped TiO2 photoanodes are 470 and 180 mV under UV and visible light irradiation, respectively. The flower-like, nanostructured, N-doped TiO2 films were able to function effectively as photogenerated cathodic protection for metals under UV and visible light illumination. Such photogenerated cathodic protection could last a period of 5.5 h even in darkness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号