首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To prevent carbon/carbon (C/C) composites from oxidation, a dense SiC nanowire-toughened SiC-MoSi2-CrSi2 multiphase coating was prepared by the two-step technique composed of chemical vapor deposition (CVD) and pack cementation. The coatings were characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). SiC nanowires could decrease the dimension of cracks and improve the oxidation and thermal shock resistance of SiC-MoSi2-CrSi2 multiphase coating. Oxidation test shows that, after introducing SiC nanowires, the weight loss of the coated sample can be reduced from 1.06% to 0.64% after oxidation at 1773 K for 155 h and decreased from 6.92% to 3.42% after thermal cycling between 1773 K and room temperature for 30 times.  相似文献   

2.
In order to prevent carbon/carbon (C/C) composites from oxidation at 1773 K, a Si-W-Mo coating was prepared on the surface of SiC coated C/C composites by a simple pack cementation technique. The microstructures and phase composition of the as-received multi-coating were examined by SEM, XRD and EDS. It was seen that the compact multi-coating was composed of α-SiC, Si and (WxMo1 − x)Si2. Oxidation behaviour of the SiC/Si-W-Mo coated C/C composites was also studied. After 315 h oxidation in air at 1773 K and thermal cycling between 1773 K and room temperature for 17times, no weight loss of the as-coated C/C composites was measured. The excellent anti-oxidation ability of the multi-coating is attributed to its dense structure and the formation of the stable glassy SiO2 film on the coating surface during oxidation.  相似文献   

3.
To protect carbon/carbon (C/C) composites from oxidation at high temperature, a Si-W-Cr coating was prepared on the surface of SiC coated C/C composites by a simple pack cementation technique. The microstructure and phase composition of the as-received multi-coating were examined by SEM, XRD and EDS. The coating obtained by first step pack cementation was porous α-SiC structure. New phases of WSi2 and CrSi2 together with α-SiC deposited on the porous SiC inner layer. Oxidation test shows that the weight loss of single SiC coated C/C is up to 8.21% after 9 h in air at 1773 K, while the weight loss of Si-W-Cr/SiC coated C/C composites is only 2.26% after 51 h. After thermal cycling between 1773 K and room temperature for 40 times, the weight loss is only 3.36%. The weight loss of coated C/C composites was primarily due to the reaction of C/C matrix and oxygen diffusing through the penetrable cracks in the coating.  相似文献   

4.
Multi-layer MoSi2-CrSi2-Si anti-oxidation coatings with different compositional ratios were prepared on the surface of SiC coated carbon/carbon (C/C) composites by a two-step pack cementation method. The microstructure and anti-oxidation performance of the coating were studied. The results show that the multi-layered coatings could protect the C/C composites from oxidation in air at 1773 K for 1000 h or 1873 K for 750 h, respectively. The anti-oxidation performance of the multi-layer MoSi2-CrSi2-Si coating is mainly attributed to their dense and microcrack-free structure, appropriate thermal expansion coefficient and the well dispersed MoSi2 and CrSi2 in the coating.  相似文献   

5.
A SiC whisker-toughened MoSi2-SiC-Si coating was prepared on carbon/carbon (C/C) composites surface by a two-step technique of slurry and pack cementation, and the effects of thermal shock and oxidation on the mechanical property of the coated C/C were studied. The flexural strength of C/C composites was improved by 6.8% after coated by SiC whisker-toughened MoSi2-SiC-Si. After thermal cycle between 1773 K and room temperature in air for 10 times, the mass loss of the coated sample was 5.08% and the percent...  相似文献   

6.
To improve the oxidation resistance of carbon/carbon (C/C) composites, a C/SiC/MoSi2–Si multilayer oxidation protective coating was prepared by slurry and pack cementation. The microstructure of the as-prepared coating was characterized by scanning electron microscopy, X-ray diffraction and energy dispersive spectroscopy. The isothermal oxidation and erosion resistance of the coating was investigated in electrical furnace and high temperature wind tunnel. The results showed that the multilayer coating could effectively protect C/C composites from oxidation in air for 300 h at 1773 K and 103 h at 1873 K, and the coated samples was fractured after erosion for 27 h at 1873 K h in wind tunnel. The weight loss of the coated specimens was considered to be caused by the formation of penetration cracks in the coating. The fracture of the coated C/C composites might result from the excessive local stress in the coating.  相似文献   

7.
In order to improve the oxidation resistance of carbon/carbon (C/C) composites, a ZrSiO4 coating on SiC pre-coated C/C composites was prepared by a hydrothermal electrophoretic deposition process. Phase compositions and microstructures of the as-prepared ZrSiO4/SiC coating were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). The anti-oxidation property and failure mechanism of the multi-layer coating were investigated. Results show that hydrothermal electrophoretic deposition is an effective route to prepare crack-free ZrSiO4 outer coatings. The multi-layer coating obviously exhibits two-layer structure. The inner layer is composed of SiC phase and the outer layer is composed of ZrSiO4 phase. The bonding strength between the outer layer coatings and C/C–SiC substrate are 30.38 MPa. The ZrSiO4/SiC coating displays excellent oxidation resistance and can protect C/C composites from oxidation at 1773 K for 332 h with a mass loss rate of only 0.48 × 10− 4 g/cm2·h. The mechanical properties of the specimens are 84.36 MPa before oxidation and 68.29 MPa after oxidation. The corresponding high temperature oxidation activation energy of the coated C/C composites at 1573–1773 K is calculated to be 119.8 kJ/mol. The oxidation process is predominantly controlled by the diffusion rate of oxygen through the ZrSiO4/SiC multi-coating. The failure of the coating is due to the formation of penetrative holes between the SiC bonding layer and the C/C matrix at 1773 K.  相似文献   

8.
The single phase hexagonal YMnO3 has been synthesized via sol-gel route by adopting two different sintering conditions. In one case, sintering has been done at ∼700 °C in Ar/H2 atmosphere and in other case it has been done at ∼1250 °C in air. Magnetic measurements of the samples, synthesized by sintering at relatively lower temperature in Ar/H2 atmosphere, show the enhanced ferromagnetic behaviour at 10 K. M-H curve shows that the value of saturation magnetization (Ms) at 10 K is 8.04 emu/g for Ar/H2 sintered sample while it is 2.93 emu/g for the air sintered sample. Moreover, a weak ferromagnetic signal at room temperature has been observed in YMnO3 compound. Magnetization versus magnetic field (M-H) curves of hydrogen treated samples, measured at room temperature, show small kink in the linear variation near origin, possibly due to presence of weak ferromagnetic interactions in the samples at room temperature. However, the polarization-electric field (P-E) curve shows weak ferroelectric characteristics for the Ar/H2 sintered samples. It is suggested that the enhanced ferromagnetism in Ar/H2 sintered sample originates from the presence of oxygen vacancies in the Ar/H2 sintered samples. Moreover, the magnetoelectric coupling coefficient at room temperature is improved to 106 mV/cm Oe for Ar/H2 sintered sample as compared to 96 mV/cm Oe for air sintered sample at 40 kHz ac magnetic field frequency.  相似文献   

9.
To protect carbon/carbon (C/C) composites against oxidation, a B2O3 modified SiC–MoSi2 coating was prepared by a two-step pack cementation. The microstructure and the oxidation resistant property of the coating were studied. The results show that, the as-received coating is a dense structure, and is composed of α-SiC, β-SiC and MoSi2. The B2O3 modified SiC–MoSi2 coating has excellent oxidation resistant property, and can protect C/C composites from oxidation at 1773 K in air for more than 242 h. The failure of the coating was considered to arise from the existence of the penetration cracks in the coating during the slow cooling from 1873 to 673 K.  相似文献   

10.
To protect carbon/carbon (C/C) composites against oxidation, ZrSiO4 oxidation protective coating was prepared on SiC-coated C/C composites by supersonic plasma spraying. X-ray diffraction and scanning electron microscopy were used to analyze the phase and microstructure of the coating. The results show that the as-prepared ZrSiO4 coating is continuous and well bonded with the SiC inner layer without penetrating crack, which exhibits good oxidation-resistant properties. After oxidation at 1773 K in air for 97 h and nine thermal shock cycles between 1773 K and room temperature, the weight loss of the coated C/C composites was only 0.08%. The excellent oxidation-resistant properties of the coating were attributed to its dense structure and the formation of the stable ZrO2-SiO2 glassy mixture on the surface of ZrSiO4 coating.  相似文献   

11.
To improve the oxidation resistance of C/C composites, a double SiC protective coating was prepared by a two-step technique. Firstly, the inner SiC layer was prepared by a pack cementation technique, and then an outer uniform and compact SiC coating was obtained by low pressure chemical vapor deposition. The microstructures and phase compositions of the coatings were characterized by SEM, EDS and XRD analyses. Oxidation behaviour of the SiC coated C/C composites was also investigated. It was found that the double SiC coating could protect C/C composites against oxidation at 1773 K in air for 178 h with a mass loss of 1.25%. The coated samples also underwent thermal shocks between 1773 K and room temperature 16 times. The mass loss of the coated C/C composites was only 2.74%. Double SiC layer structures were uniform and dense, and can suppress the generation of thermal stresses, facilitating an excellent anti-oxidation coating.  相似文献   

12.
A MoSi2–CrSi2–SiC–Si multi-component coating was prepared on the surface of carbon/carbon (C/C) composites by a two-step pack cementation method. The microstructure, oxidation behavior and mechanical properties of the coating were studied. These results show that the multi-component coating could protect the C/C composites from oxidation in air at 1873 K for 300 h and withstand 30 thermal cycles between 1873 K and room temperature, respectively. The mass loss and mechanical property loss of the coated C/C composites are considered due to the worse fluidity of SiO2 at intermediate temperatures and the thermal mismatch between the coating and C/C composites.  相似文献   

13.
To protect carbon/carbon (C/C) composites from oxidation, a dense coating has been produced by a two-step pack cementation technique. XRD and SEM analysis shows that the as-obtained coating was composed of MoSi2, SiC and Si with a thickness of 80-100 μm. The MoSi2-SiC-Si coating has excellent anti-oxidation property, which can protect C/C composites from oxidation at 1773 K in air for 200 h and the corresponding weight loss is only 1.04%. The weight loss of the coated C/C composites is primarily due to the reaction of C/C substrate and oxygen diffusing through the penetration cracks in the coating.  相似文献   

14.
To improve the anti-oxidation ability of silicon-based coating for carbon/carbon (C/C) composites at high temperatures, a ZrB2 modified silicon-based multilayer oxidation protective coating was prepared by pack cementation. The phase composition, microstructure and oxidation resistance at 1773, 1873 and 1953 K in air were investigated. The prepared coating exhibits dense structure and good oxidation protective ability. Due to the formation of stable ZrSiO4–SiO2 compound, the coating can effectively protect C/C composites from oxidation at 1773 K for more than 550 h. The anti-oxidation performance decreases with the increase of oxidation temperature. The mass loss of coated sample is 2.44% after oxidation at 1953 K for 50 h, which is attributed to the decomposition of ZrSiO4 and the volatilization of SiO2 protection layer.  相似文献   

15.
通过磁控溅射法在碳/碳复合材料表面成功制得了SiC/MoSi2-ZrB2陶瓷涂层并对结构及其在高温有氧环境中的抗氧化性能进行了研究。结果表明制备的SiC/MoSi2-ZrB2陶瓷涂层呈柱状晶结构且均匀性良好,其在1273K和1773K的有氧环境中氧化60min失重率分别是5.6×10-2 g/cm2 和 6.3×10-2 g/cm2。  相似文献   

16.
Yttrium silicate (Y2Si2O7) coating was fabricated on C/SiC composites through dip-coating with silicone resin + Y2O3 powder slurry as raw materials. The synthesis, microstructure and oxidation resistance and the anti-oxidation mechanism of Y2Si2O7 coating were in–estigated. Y2Si2O7 can be synthesized by the pyrolysis of Y2O3 powder filled silicone resin at mass ratio of 54.2:45.8 and 800 °C in air and then heat treated at 1400 °C under Ar. The as-fabricated coating shows high density and fa–orable bonding to C/SiC composites. After oxidation in air at 1400, 1500 and 1600 °C for 30 min, the coating-containing composites possess 130%–140% of original flexural strength. The desirable thermal stability and the further densification of coating during oxidation are responsible for the excellent oxidation resistance. In addition, the formation of eutectic Y–Si–Al–O glassy phase between Y2Si2O7 and Al2O3 sample bracket at 1500 °C is disco–ered.  相似文献   

17.
To protect carbon/carbon (C/C) composites against oxidation, a Si–Mo coating was prepared on C/SiC-coated C/C composites by a simple slurry method. The microstructure of the coating was characterized by X-ray diffraction, scanning electron microscopy and Raman spectra. Results showed that the coating was mainly composed of SiC, MoSi2 and Si. It could protect C/C composites from oxidation at 1873 K in air for 300 h and withstand 13 thermal cycles between room temperature and 1873 K. The excellent oxidation and thermal shock resistance of the coating was attributed to the formation of dense SiO2 glass at high temperature. The volatilization of MoO3 and SiO2 at 1873 K was the main reason of the weight loss of the coated C/C composites.  相似文献   

18.
An amorphous boron carbide (a-BC) coating was prepared by LPCVD process from BCl3-CH4-H2-Ar system. XPS result showed that the boron concentration was 15.0 at.%, and carbon was 82.0 at.%. One third of boron was distributed to a bonding with carbon and 37.0 at.% was dissolved in graphite lattice. A multiple-layered structure of CVD SiC/a-BC/SiC was coated on 3D C/SiC composites. Oxidation tests were conducted at 700, 1000, and 1200 °C in 14 vol.% H2O/8 vol.% O2/78 vol.% Ar atmosphere up to 100 h. The 3D C/SiC composites with the modified coating system had a good oxidation resistance. This resulted in the high strength retained ratio of the composites even after the oxidation.  相似文献   

19.
In this work, two composite compositions—one with 30% (v/v) SiC, the other with 30% (v/v) TiC, balance Ti3SiC2—were synthesized and characterized. Fully dense samples were fabricated by hot isostatically pressing Ti, SiC and C powders for 8 h at 1500 or 1600 °C and a pressure of 200 MPa. Both TiC and SiC lower grain boundary mobility in Ti3SiC2. Coarsening of the SiC particles was also observed. At comparable grain sizes, all composites tested were weaker in flexure than the unreinforced Ti3SiC2 matrix, with the reduction in strength being the worst for the SiC composites. This reduction in strength is most probably due to thermal expansion mismatches between the matrix and reinforcement phases. The composite samples were exceptionally damage tolerant; in one case a 100 N Vickers indentation (in a 1.5-mm thick bar) did not reduce the flexural strength as compared to an unindented or as-fabricated samples. The same is true for thermal shock resistance; quenching samples from 1400 °C in room temperature water, resulted in strength reductions that were 12% at best and 50% at worst. In the 25–1000 °C temperature range, the thermal expansion coefficients of the two composites were indistinguishable at 8.2×10−6 K−1. The Vickers hardness values depended on load; at 100 N, the hardnesses were ≈15 GPa; at 300 N, they asymptote to 7–8 GPa. For the most part, very few cracks emanate from the corners of the Vickers indents even at loads as high as 500 N. In the few cases where cracks did initiate, fracture toughness values were crudely estimated to lie in the 5–7.5 MPa √m range.  相似文献   

20.
One standard surface crack was introduced at the center of the tension surface of the test specimens with a Vickers indenter to investigate the effect of oxidation on the strength of ZrB2-SiC-graphite ceramic. The flexural strength of the pre-cracked specimen was 371.7 MPa, which was lower than the strength of ∼500 MPa for the original ceramic. Oxidation in dry or moist air was employed for 30, 60, or 90 min. The flexural strength of the oxidized specimens increased as the oxidation time increased up to 60 min and then the flexural strength did not further increase. The flexural strength of specimens oxidized in dry air was greater than those specimens oxidized in moist air, which revealed that the compounds of glassy structure could better heal the cracks on the surface of the specimen than the compounds of lamellar structure. The strength of the oxidized specimen was comparable to the strength of the pre-cracked specimens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号