首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In addition to lattice doping and carbon-coating, surface modification with other metal oxides can also improve the electrochemical performance of LiFePO4 powders. In this work, highly conductive vanadium oxide (V2O3) is in situ produced during the synthesis of carbon-coated LiFePO4 (LiFePO4/C) powders by a solid state reaction process and acts as a surface modifier. The structures and compositions of LiFePO4/C samples containing 0-10 mol% vanadium are analyzed by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. Their electrochemical properties are also characterized with galvanostatic cell cycling and cyclic voltammetry. It is found that vanadium is present in the form of V2O3 that is incorporated in the carbon phase. The vanadium-modified LiFePO4/C samples show improved rate capability and low-temperature performance. Their apparent lithium diffusion coefficient is in the range of 10−12 to 10−10 cm2 s−1 depending on the vanadium content. Among the investigated samples, the one with 5 mol% vanadium exhibits the best electrochemical performance.  相似文献   

2.
Olivine LiFePO4 particles were prepared by solid-state reaction using Li2CO3, (NH4)2HPO4 and FeC2O42H2O as raw materials, and they were coated with an appropriate amount of carbon through thermal decomposition of C16H10 pyrene. Cathodes using the olivine particles were subjected to an open-circuit voltage measurement under the relaxation condition of 24 h at each SOC and DOD states. The electrochemical reaction in the LiFePO4 cathode was composed of a large plateau around 3.45 V with sloped regions nearby for both the fully charged and discharged states. It was found that the sloped region widths exhibited a hysteresis, that is, they depend on the direction of the redox reaction. Furthermore, both sloped regions became narrower when the operating temperature was raised from 30 °C to 60 °C. These facts implied that the obtained profiles were not in an equilibrium state with a quasi-OCV profile than the real one, and that the potential relaxation in the sloped regions took an extremely long time (more than 24 h).  相似文献   

3.
The effects of fluorine substitution on the electrochemical properties of LiFePO4/C cathode materials were studied. Samples with stoichiometric proportion of LiFe(PO4)1−xF3x/C (x = 0.025, 0.05, 0.1) were prepared by adding LiF in the starting materials of LiFePO4/C. XRD and XPS analyses indicate that LiF was completely introduced into bulk LiFePO4 structure in LiFe(PO4)1−xF3x/C (x = 0.025, 0.05) samples, while there was still some excess of LiF in LiFe(PO4)0.9F0.3/C sample. The results of electrochemical measurement show that F-substitution can improve the rate capability of these cathode materials. The LiFe(PO4)0.9F0.3/C sample showed the best high rate performance. Its discharge capacity at 10 C rate was 110 mAh g−1 with a discharge voltage plateau of 3.31–3.0 V versus Li/Li+. The LiFe(PO4)0.9F0.3/C sample also showed obviously better cycling life at high temperature than the other samples.  相似文献   

4.
LiFePO4/polyacenes (PAS) composite is synthesized by iron oxyhydroxide as a new raw material and phenol–formaldehyde resin as both reducing agent and carbon source. The mechanism of the reaction is outlined by the analysis of XRD, FTIR as well as TG/DSC. The results show that the formation of LiFePO4 is started at 300 °C, and above 550 °C, the product can be mainly ascribed to olivine LiFePO4. The electrochemical properties of the synthesized composites are investigated by charge–discharge tests. It is found that the prepared sample at 750 °C (S750) has a better electrochemical performance than samples prepared at other temperatures. A discharge capacity of 158 mAh g−1 is delivered at 0.2 C. Under high discharge rate of 10 C, a discharge capacity of 145 mAh g−1 and good capacity retention of 93% after 800 cycles are achieved. The morphology of S750 and PAS distribution in it are investigated by SEM and TEM.  相似文献   

5.
Hierarchical LiFePO4 microflowers have been successfully synthesized via a solvothermal reaction in ethanol solvent with the self-prepared ammonium iron phosphate rectangular nanoplates as a precursor, which is obtained by a simple water evaporation method beforehand. The hierarchical LiFePO4 microflowers are self-assemblies of a number of stacked rectangular nanoplates with length of 6-8 μm, width of 1-2 μm and thickness of around 50 nm. When ethanol is replaced with the water-ethanol mixed solvent in the solvothermal reaction, LiFePO4 micro-octahedrons instead of hierarchical microflowers can be prepared. Then both of them are respectively modified with carbon coating through a post-heat treatment and their morphologies are retained. As a cathode material for rechargeable lithium ion batteries, the carbon-coated hierarchical LiFePO4 microflowers deliver high initial discharge capacity (162 mAh g−1 at 0.1 C), excellent high-rate discharge capability (101 mAh g−1 at 10 C), and cycling stability, which exhibits better electrochemical performances than carbon-coated LiFePO4 micro-octahedrons. These enhanced electrochemical properties can be attributed to the hierarchical micro/nanostructures, which can take advantage of structure stability of micromaterials for long-term cycling. Furthermore the rectangular nanoplates as the building blocks can improve the electrochemical reaction kinetics and finally promote the rate performance.  相似文献   

6.
To meet the requirements of high-power products (ex. electric scooters, hybrid electric vehicles, pure electric vehicles and robots), high-energy safe lithium-ion batteries need to be developed in the future. This research will focus on the microstructures and electrochemical properties of olivine-type LiFePO4 cathode materials. The morphologies of LiFePO4/C composite materials show spherical-type particles and have good carbon conductive networks. From the TEM bright field image and EELS mapping, the LiFePO4/C powder shows continuous, dispersive nano-carbon network. These structures will improve electron transfer and lithium-ion diffusion for LiFePO4 cathode materials, and increase their conductivity from 10−9 S cm−1 to 10−3 S cm−1. The electrochemical properties of LiFePO4/C cathode material in this work demonstrated high rate capability (≥12 C) and long cycle life (≥700 cycles at a 3 C discharge rate).  相似文献   

7.
Nanoporous LiFePO4/C composite cathodes have been synthesized by a novel one-pot, glycine-assisted combustion (GAC) method in presence of 2 wt.% Super P carbon in both Ar and 90% Ar-10% H2 atmospheres at 750 °C for a short time of 6 h. While the Ar atmosphere offers phase pure samples, the Ar-H2 atmosphere leads to the formation of impurity phases as indicated by X-ray diffraction data. The combustion-initiated expulsion of gases aids the formation of a nanoporous LiFePO4/C composite structure as evident from electron microscopic analysis, which could allow easy penetration of the electrolyte and realization of an electronic-ionic 3D network. The nanoporous LiFePO4/C sample synthesized in Ar atmosphere exhibits a high discharge capacity of 160 mAh g−1 with 3% capacity fade in 50 cycles and high rate capability. With a short reaction time, the GAC method offers an energy efficient approach to synthesize high performance olivine LiFePO4/C composite cathodes.  相似文献   

8.
Porous micro-spherical aggregates of LiFePO4/C nanocomposites were prepared with a process of spray drying at 200 °C and subsequent heat treatment at 700 °C for 12 h by a novel and simple template-free sol-gel-SD method independent of surfactants or templates. The results indicate that the as-obtained LiFePO4 porous microspheres have the mean diameter of 19.8 μm, average pore size of 45 nm, and large specific surface area (20.2 m2 g−1) with evenly distributed carbon (4.5 wt.%). The particles can be easily brought into contact with electrolyte, facilitating electric and lithium ion diffusion. They present large reversible discharge capacity of 137.5 mAh g−1 at the current density of 0.1 C, good rate capacity of 53.8 mAh g−1 at 10 C, and excellent capacity retention rate closed to 100% after various current densities in the region of 2.0-4.3 V.  相似文献   

9.
The electrochemical performance of LiFePO4 was tested at temperatures up to 150 °C for micrometric and nanometric size samples. Among the latter, both highly defective samples obtained by direct precipitation and annealed samples were tested. The comparison of voltage composition profiles for these samples coupled to GITT experiments allowed to conclude that defects seem to be the major factor in inducing the solid solution behaviour at room temperature. Good capacity retention is exhibited upon prolonged cycling at 100 °C in EC LiBOB electrolyte, also for nanosized samples that still maintain 75% of the initial capacity after 170 cycles. These results prove that the enhanced thermal stability of such electrolytes can be extended to temperatures much higher than those usually tested.  相似文献   

10.
Carbon coated LiFePO4/C cathode material is synthesized with a novel sol-gel method, using cheap FePO4·2H2O as both iron and phosphorus sources and oxalic acid (H2C2O4·2H2O) as both complexant and reductant. In H2C2O4 solution, FePO4·2H2O is very simple to form transparent sols without controlling the pH value. Pure submicrometer structured LiFePO4 crystal is obtained with a particle size ranging from 100 to 500 nm, which is also uniformly coated with a carbon layer, about 2.6 nm in thickness. The as-synthesized LiFePO4/C sample exhibits high initial discharge capacity 160.5 mAh g−1 at 0.1 C rate, with a capacity retention of 98.7% after 50th cycle. The material also shows good high-rate discharge performances, about 106 mAh g−1 at 10 C rate. The improved electrochemical properties of as-synthesized LiFePO4/C are ascribed to its submicrometer scale particles and low electrochemical impedance. The sol-gel method may be of great interest in the practical application of LiFePO4/C cathode material.  相似文献   

11.
Monoclinic Li3V2(PO4)3 can be rapidly synthesized at 750 °C for 5 min (MW5m) by using temperature-controlled microwave solid-state synthesis method (TCMS). The carbon-free sample MW5m presents well electrochemical properties. In the cut-off voltage 3.0-4.3, MW5m presents a charge capacity 132 mAh g−1, almost equivalent to the reversible cycling of two lithium ions per Li3V2(PO4)3 formula unit (133 mAh g−1), and discharge capacity 126.4 mAh g−1. In the cut-off voltage 3.0-4.8 V, MW5m shows an initial discharge capacity of 183.4 mAh g−1, near to the theoretical discharge capacity. In the cycle performance, the capacity fade of Li3V2(PO4)3 is dependent on the cut-off voltage and the preparation method.  相似文献   

12.
9LiFePO4·Li3V2(PO4)3/C is synthesized via a carbon thermal reaction using petroleum coke as both reduction agent and carbon source. The as-prepared material is not a simple mixture of LiFePO4 (LFP) and Li3V2(PO4)3 (LVP), but a composite possessing two phases: one is V-doped LFP and the other is Fe-doped LVP. The typical structure enhances the electrical conductivity of the composite and improves the electrochemical performances. The first discharge capacity of 9LFP·LVP/C in 18650 type cells is 168 mAh g−1 at 1 C (1 C9LFP·LVP/C = 166 mA g−1), and exhibits high reversible discharge capacity of 125 mAh g−1 at 10 C even after 150 cycles. At the temperature of −20 °C, the reversible capacity of 9LFP·LVP/C can maintain 75% of that at room temperature.  相似文献   

13.
In this study, a solution method was employed to synthesize LiFePO4-based powders with Li3PO4 and Fe2P additives. The composition, crystalline structure, and morphology of the synthesized powders were investigated by using ICP-OES, XRD, TEM, and SEM, respectively. The electrochemical properties of the powders were investigated with cyclic voltammetric and capacity retention studies. The capacity retention studies were carried out with LiFePO4/Li cells and LiFePO4/MCMB cells comprised LiFePO4-based materials prepared at various temperatures from a stoichiometric precursor. Among all of the synthesized powders, the samples synthesized at 750 and 775 °C demonstrate the most promising cycling performance with C/10, C/5, C/2, and 1C rates. The sample synthesized at 775 °C shows initial discharge capacity of 155 mAh g−1 at 30 °C with C/10 rate. From the results of the cycling performance of LiFePO4/MCMB cells, it is found that 800 °C sample exhibited higher polarization growth rate than 700 °C sample, though it shows lower capacity fading rate than 700 °C sample. For Fe2P containing samples, the diffusion coefficient of Li+ ion increases with increasing amount of Fe2P, however, the sample synthesized at 900 °C shows much lower Li+ ion diffusion coefficient due to the hindrance of Fe2P layer on the surface of LiFePO4 particles.  相似文献   

14.
In order to improve the power performance of the lithium ion battery based on lithium iron phosphate (LiFePO4), a new methodology using a three-dimensional micro-porous current collector was described. The three-dimensional current collector was manufactured based on foamed polyurethane and nickel–chromium alloy. The cell using the three-dimensional current collector exhibited a superior high-rate discharge capability as compared to a conventional-type cell using the aluminum foil current collector. Furthermore, impedance analysis revealed the size reduction of a semicircle for the charge-transfer resistance by applying the three-dimensional current collector, which indicates a superior current collecting ability for the developed substrate.  相似文献   

15.
Olivine structured LiFePO4 (lithium iron phosphate) and Ti4+-doped LiFe1−xTixPO4 (0.01 ≤ x ≤ 0.09) powders were synthesized via a solution route followed by heat-treatment at 700 °C for 8 h under N2 flowing atmosphere. The compositions, crystalline structure, morphology, carbon content, and specific surface area of the prepared powders were investigated with ICP-OES, XRD, TEM, SEM, EA, and BET. Capacity retention study was used to investigate the effects of Ti4+ partial substitution on the intercalation/de-intercalation of Li+ ions in the olivine structured cathode materials. Among the prepared powders, LiFe0.97Ti0.03PO4 manifests the most promising cycling performance as it was cycled with C/10, C/5, C/2, 1C, 2C, and 3C rate. It showed initial discharge capacity of 135 mAh g−1 at 30 °C with C/10 rate. From the results of GSAS refinement for the prepared samples, the doped-Ti4+ ions did not occupy the Fe2+ sites as expected. However, the occupancy of the doped Ti4+ ions are still not clear, and theoretical calculations are needed for further studies. From the variation of lattice parameters calculated by the least square method without refinement, it suggested that Ti4+-doped LiFePO4 samples formed solid solutions at low doping levels while TiO2 was also observed with TEM in samples prepared with doping level higher than 5 mol%.  相似文献   

16.
Self-assembled mesoporous LiFePO4 (LFP) with hierarchical spindle-like architectures has been successfully synthesized via the hydrothermal method. Time dependent X-ray diffraction, scanning electron microscopy, and cross section high resolution transmission electron microscopy are used to investigate the detailed growth mechanism of these unique architectures. Reaction time and pH value play multifold roles in controlling the microstructures of LFP. The LFP particles are uniform mesoporous spindles, which are comprised of numerous single-crystal LFP nanocrystals. As the cathode material for lithium batteries, LFP exhibits high initial discharge capacity (163 mAh g−1, 0.1 C), excellent high-rate discharge capability (111 mAh g−1, 5 C), and cycling stability. These enhanced electrochemical properties can be attributed to this unique microstructure, which will remain structural stability for long-term cycling. Furthermore, nanosizing of LFP nanocrystals can increase the electrochemical reaction surface, enhance the electronic conductivity, and promote lithium ion diffusion.  相似文献   

17.
The olivine type LiFePO4 is synthesized via a simple and inexpensive route by aqueous co-precipitation of an Fe(II) precursor material in molten stearic acid and subsequent heat treatment at different temperatures. Stearic acid serves as both chelating agent and carbonaceous material. The obtained composites with carbon are characterized by X-ray powder diffraction, field emission scanning electron microscopy, and Mössbauer spectroscopy. Electrochemical characteristics of the composites are evaluated by using galvanostatic charge/discharge tests. The powder obtained at 700 °C delivers discharge capacity of 160 mAh g−1, quite near the theoretical value.  相似文献   

18.
Carbon free composites Li1−xMgxFePO4 (x = 0.00, 0.02) were synthesized from LiOH, H3PO4, FeSO4 and MgSO4 through hydrothermal route at 180 °C for 6h followed by being fired at 750 °C for 6 h. The samples were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), flame atomic absorption spectroscopy and electronic conductivity measurement. To investigate their electrochemical properties, the samples were mixed with glucose as carbon precursors, and fired at 750 °C for 6 h. The charge–discharge curves and cycle life test were carried out at 23 ± 2 °C. The Rietveid refinement results of lattice parameters of the samples indicate that the magnesium ion has been successfully doped into the M1 (Li) site of the phospho-olivine structure. With the same order of magnitude, there is no material difference in terms of the electronic conductivities between the doped and undoped composites. Conductivities of the doped and undoped samples are 10−10 S cm−1 before being fired, 10−9 S cm−1 after being fired at 750 °C, and 10−1 S cm−1 after coated with carbon, respectively. Both the doped and undoped composites coated with carbon exhibit comparable specific capacities of 146 mAh g−1 vs. 144 mAh g−1 at 0.2 C, 140 mAh g−1 vs. 138 mAh g−1 at 1 C, and 124 mAh g−1 vs. 123 mAh g−1 at 5 C, respectively. The capacity retention rates of both doped and undoped samples over 50 cycles at 5 C are close to 100% (vs. the first-cycle corresponding C-rate capacity). Magnesium doping has little effects on electronic conductivity and electrochemical properties of LiFePO4 composites prepared via hydrothermal route.  相似文献   

19.
Optimized performances of core-shell structured LiFePO4/C nanocomposite   总被引:1,自引:0,他引:1  
A nanosized LiFePO4/C composite with a complete and thin carbon-shell is synthesized via a ball-milling route followed by solid-state reaction using poly(vinvl alcohol) as carbon source. The LiFePO4/C nanocomposite delivers discharge capacities of 159, 141, 124 and 112 mAh g−1 at 1 C, 5 C, 15 C and 20 C, respectively. Even at a charge-discharge rate of 30 C, there is still a high discharge capacity of 107 mAh g−1 and almost no capacity fading after 1000 cycles. Based on the analysis of cyclic voltammograms, the apparent diffusion coefficients of Li ions in the composite are in the region of 2.42 × 10−11 cm2 s−1 and 2.80 × 10−11 cm2 s−1. Electrochemical impedance spectroscopy and galvanostatic intermittent titration technique are also used to calculate the diffusion coefficients of Li ions in the LiFePO4/C electrode, they are in the range of 10−11-10−14 cm2 s−1. In addition, at −20 °C, it can still deliver a discharge capacity of 122 mAh g−1, 90 mAh g−1 and 80 mAh g−1 at the charge-discharge rates of 0.1 C, 0.5 C and 1 C, respectively.  相似文献   

20.
Na-doped Li3−xNaxV2(PO4)3/C (x = 0.00, 0.01, 0.03, and 0.05) compounds have been prepared by using sol-gel method. The Rietveld refinement results indicate that single-phase Li3−xNaxV2(PO4)3/C with monoclinic structure can be obtained. Among three Na-doped samples and the undoped one, Li2.97Na0.03V2(PO4)3/C sample has the highest electronic conductivity of 6.74 × 10−3 S cm−1. Although the initial specific capacities for all Na-doped samples have no much enhancement at the current rate of 0.2 C, both cycle performance and rate capability have been improved. At the 2.0 C rate, Li2.97Na0.03V2(PO4)3/C presents the highest initial capacity of 118.9 mAh g−1 and 12% capacity loss after 80 cycles. The partial substitution of Li with Na (x = 0.03) is favorable for electrochemical rate and cyclic ability due to the enlargement of Li3V2(PO4)3 unit cells, optimizing the particle size and morphology, as well as resulting in a higher electronic conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号