首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
高速切削加工刀具材料   总被引:1,自引:0,他引:1  
介绍了高速切削加工技术及模具高速切削所使用的陶瓷刀具、金刚石刀具、立方氮化硼刀具、涂层刀具的性能特点及应用,探讨了模具高速切削刀具材料的发展方向.  相似文献   

2.
为了研究用于切削球墨铸铁CGI的CBN刀具的磨损机理,进行了多种实验,同时为了探讨在这种情形下切削CI的刀具寿命为什么特别高,而对用于切削灰口铸铁CI的刀具也进行了比较,发现对刀具的磨损有两个主要因素:即(1)刀具的氧化;(2)刀具与CGI之间组元的互扩散。这些磨损机理对于切削CGI和CI材料或多或少是相同的。刀具寿命的差异可用在切削灰口铸铁CI情形下,刀具表面形成MnS层来解释。这种MnS层对于CGI是不会形成的。MnS层起着润滑和阻碍扩散作用,并且是在切削灰口铸铁CI的情形或减少刀具磨损的原因。  相似文献   

3.
由于铝合金高速切削过程中切削温度高,导致刀具严重磨损,降低了刀具寿命和零件加工精度,因此准确预测刀具磨损和分析刀具磨损规律至关重要。分别从刀具寿命模型和刀具磨损速率模型概述刀具磨损理论模型研究进展,基于切削用量、刀具性质和冷却方式分析刀具磨损规律。从已有研究来看,在铝合金高速切削过程中刀具磨损随切削速度和进给量增大而增大,切削深度无明显规律;常见刀具磨损有黏结磨损、磨粒磨损和扩散磨损,其中黏结磨损为主要刀具磨损机制。  相似文献   

4.
何光春 《机床与液压》2019,47(1):185-188
采用超硬刀具精加工模具工作零件的“以切代磨”机加工艺能够显著提高模具使用寿命。但目前对此研究还甚少。以超硬刀具PCBN高速切削硬态AISIH13(HRC53),并用测温仪、光学仪、工具显微镜(XGJ-1)及JSM 5600LV型扫描电镜等对刀具磨损进行观察、检测与分析。结果表明:前后刀面主要以黏结磨损为主,但前刀面磨损主因是切削热,而后刀面磨损主因是机械应力,且在主切削刃上常发生沟槽磨损,若不平衡切削时亦会产生不规则破损。  相似文献   

5.
Ti6Al4V是典型的难加工材料,切削效率低,刀具磨损严重。文章对硬质合金刀具在高速范围内干铣削Ti6Al4V进行了正交试验,获得了干切削状态下铣削刀具寿命的经验公式,并利用扫描电镜(SEM)和能谱分析(EDS)研究了铣削刀具的磨损形态和磨损机理,粘结、扩散及氧化是硬质合金刀具的主要磨损机理。最后,利用等寿命-效率响应曲面法,对硬质合金刀具在干切削状态下铣削Ti6Al4V的切削参数进行了优化,在效率不变的情况下,适当降低切削速度,增大切削深度,可以提高刀具寿命。试验刀具的切削参数优化结果为:切削速度40—60m/min、轴向切削深度0.5—1mm、径向切深7—10mm、进给量0.07—0.1mm/r,在建议切削参数下刀具寿命约在30—50min。  相似文献   

6.
超高强度钢T250作为一种典型的难加工材料,因其优良的物理和力学性质而应用广泛,通过有限元仿真研究其高速切削过程的刀具磨损预测模型显得非常必要。文章针对高强度马氏体时效钢T250的高速加工的刀具寿命进行研究,通过基于剪切带厚度的应变计算理论计算超高强度钢T250材料的流变应力本构模型,同时进行刀具磨损仿真,从仿真中获得切削过程变量的分布数据,结合仿真中获得后刀面磨损数据,通拟合建立T250钢高速切削的Usui磨损率模型,最终实现对刀具磨损的预测。  相似文献   

7.
重视刀具重磨技术 降低生产加工成本   总被引:1,自引:0,他引:1  
初犁 《工具展望》2004,(2):15-17
近年来,随着机械零件和模具的高精度化迅速发展,高速高精度CNC机床日益普及,可高效率地生产高精度零件和模具。从切削刀具方面来看,工具厂家在材质和刃形上作了许多改进,已开发出许多高精度、长寿命的刀具产品,正在被生产企业广为采用。但市场上销售的诸多刀具在磨损之后,往往都是  相似文献   

8.
针对粘结磨损对涂层硬质合金刀具使用寿命的影响问题,为了优化刀具涂层材料,降低刀具磨损率,基于热力学理论,计算了硬质合金刀具涂层材料的焓值,分析了涂层材料的耐磨性,研究了涂层硬质合金刀具粘结磨损规律。通过涂层硬质合金刀具切削加工钛合金的实验,使用EDS分析仪和白光干涉仪分别对涂层硬质合金刀具切削加工后的元素能谱和表面形貌进行了分析。结果表明:采用热力学理论分析方法可以获得较好的粘结磨损预测精度,高速切削时刀具磨损区域发生了粘结磨损,磨损原因与元素扩散密切相关;粘结磨损主要发生在中速切削时;随着切削速度的提升,粘结磨损率先增加后降低。所得结论将为优化切削参数、提高刀具寿命提供有益的参考。  相似文献   

9.
模具高速切削刀具及其合理运用   总被引:1,自引:0,他引:1  
在高速切削应用于模具工业的历程中,刀具的地位显得日益重要。刀具材料、结构参数和刀具夹持系统对加工精度和刀具寿命具有很大的影响,而且应特别注意高速加工刀具与高速加工系统中其他因素的密切关系。  相似文献   

10.
使用PCBN和陶瓷两种材质的刀具对淬硬模具钢Cr12MoV进行高速切削试验,深入研究了高速切削时的刀具寿命、刀具磨损形态和磨损原因,得出如下结论:相同的切削条件下,PCBN刀具寿命约为陶瓷刀具的2~3倍,当切削速度由153 m/min增大到241 m/min时,两种材质刀具寿命均下降50%以上;在相对低速下切削时,PCBN刀具和陶瓷刀具磨损形态主要为月牙洼和后刀面磨损,在相对高速下切削时,两种刀具均出现破损,破损形态主要包括崩刃和片状剥落等;PCBN刀具磨损原因主要为黏结磨损、氧化磨损和扩散磨损,陶瓷刀具的主要磨损原因有磨粒磨损、黏结磨损和扩散磨损;相同切削条件下,PCBN刀具抗磨粒磨损的能力好于陶瓷刀具,而陶瓷刀具的抗氧化性能要好于PCBN刀具;切削速度对刀具磨损原因有重要影响,随着切削速度的增大,磨粒磨损程度和黏结磨损程度均减弱.  相似文献   

11.
The rapid wear rate of cutting tools due to high cutting temperature is a critical problem to be solved in high-speed machining (HSM) of hardened steels. Near-dry machining such as minimum quantity lubrication (MQL) is regarded as one of the solutions to this difficulty. However, the function of MQL in HSM is still uncertain so far which prevents MQL from widely being utilized in the machining of hardened steels. In this paper, the mechanism of MQL in HSM of hardened steel is investigated more comprehensively. Comparing with dry cutting, the tool performance can be enhanced by MQL under all cutting speeds in this study. It is found that MQL can provide extra oxygen to promote the formation of a protective oxide layer in between the chip–tool interface. This layer is basically quaternary compound oxides of Fe, Mn, Si, and Al, and is proved to act as diffusion barriers effectively. Hence, the strength and wear resistance of a cutting tool can be retained which leads to a significant improvement of tool life. It is found that there exists an optimal cutting speed at which a stable protective oxide layer can be formed. When cutting speed is lower than this speed, there is less oxide layer and the improvement of tool life is less apparent. As the cutting speed is far beyond the optimal value, the protective layer is absent and the thermal cracks are apt to occur at the cutting edge due to large fluctuation of temperature. Resultantly, application of MQL is inappropriate in the extreme high-speed cutting condition irrespective of its little increase in tool life. Based on this study, it is concluded that the tool life can be effectively improved by MQL in HSM of NAK80 hardened steels when cutting parameters are chosen properly.  相似文献   

12.
Alumina based ceramic cutting tool is an attractive alternative for carbide tools in the machining of steel in its hardened condition. These ceramic cutting tools can machine with high cutting speed and produce good surface finish. The wear mechanism of these ceramic cutting tools should be properly understood for greater utilization. Two types of ceramic cutting tools namely Ti[C,N] mixed alumina ceramic cutting tool and zirconia toughened alumina ceramic cutting tool are used for our investigation. The machinability of hardened steel was evaluated by measurements of tool wear, cutting forces and surface finish of the work piece. These alumina based ceramic cutting tool materials produce good surface finish in the machining of hardened steel. In this paper an attempt is made to analyse the important wear mechanisms like abrasive wear, adhesive wear and diffusion wear of these ceramic cutting tool materials and the performance of these ceramic cutting tools related to the surface finish is also discussed here.  相似文献   

13.
A research program was conducted to study tool wear on uncoated and coated (with TiN) high speed steel (HSS) for fluted end mill cutters. These cutters were used to machine AISI 4340 steel at axial and radial engagements of 12.7 mm (0.5 in.). All the machining was carried out using production conditions with the process periodically interrupted to carefully measure the wear condition of the cutting tool. Cutting conditions were carefully chosen so that a linear wear model for the useful life of the cutting tool could be statistically tested. One phase of testing used uncoated tools from 30 different suppliers and the nonstationary linear wear model provided a stochastic representation to determine tool quality using reliability and economic measures. Another phase used the coated tools and a stationary linear wear model to relate force, power, specific cutting energy, and mechanistic model parameters to service life measures. The cutters from each of these phases were carefully examined using optical and scanning electron microscopes so that the dominant wear mechanisms could be identified.  相似文献   

14.
High Speed Machining (HSM) is now recognised as one of the key processes in advanced machining technology for automotive, die and mould, and aerospace industries. Machining of metals at high cutting speeds produces high temperatures in the primary shear zone, which induces plasticity in the workpiece and hence decreases the cutting forces. This investigation is concerned with the estimation of the amount of heat flowing into the cutting tool in high speed turning of BS 970-709M40EN19 (AISI/SAE-4140) high strength alloy steel. The aim is to characterise the thermal field in the cutting zone and thus understand the mechanics of HSM. Experimental results are presented of temperature measurements on the tool rake face during orthogonal cutting at cutting speeds ranging between 200 and 1200 m/min. These measured temperatures are compared with temperature fields in the cutting tool obtained from a finite element transient thermal analysis. It is shown that the tool–chip contact area, and hence the proportion of the secondary heat source conducting into the tool, changes significantly with cutting speed; it decreases with the cutting speed in the conventional and the transition regions but increases in the HSM region approaching 65% at 1200 m/min. These results are relevant to the study of thermal expansion of the cutting tools and the cutting edge wear in HSM operations.  相似文献   

15.
Usage of titanium alloys has increased since the past 50 years despite difficulties encountered during machining. Many studies involving different tool materials, cutting parameters, tool geometry and cutting fluids when machining this important aerospace material have been published. However, there are relatively few literatures available on the application of ultra hard tools in the machining of titanium-alloys. The primary objective of this study is to investigate the behaviour of Polycrystalline Diamond (PCD) tools when machining Ti–6Al–4V alloy at high speed conditions using high pressure coolant supplies. Tool performance under different tribological conditions and the dominant wear mechanisms were investigated. Increase in coolant pressure tends to improve tool life and reduce the adhesion tendency, accelerated by the susceptibility of titanium alloy to gall during machining. Adhesion and attrition are the dominant wear mechanisms when machining at the cutting conditions investigated.  相似文献   

16.
The main limitation on the use of nickel-base superalloys, such as INCONEL 718, is the difficulty in conventional-type machining. The use of high cutting speed to achieve both machining adiabatic conditions and high productivity is necessary for their applications. This non-conventional type machining results in a short life-span of tools, even for those expensive ceramic ones with reinforced SiC whiskers (SiCw) suitable for use at high cutting speeds. The aim of the paper is to present the results of a new idea proposed by the authors to obtain an increase in tool life at high cutting speed by minimizing the temperature effects on composite reinforcement mechanisms. The 2090 SiC whiskers reinforced A12O3 tools were CrN and (Ti,AI)N coated using the PVD technique, and comparative machining tests on INCONEL 718 were carried out using uncoated and coated tools. After machining, the tools were observed with a scanning electron microscope (SEM), and EDAX (X-ray) semiquantitative analyses were performed. The behaviour of the CrN and (Ti,AI)N layers using various cutting conditions was analysed and different wear mechanisms along the tool chip contact length were observed. The cause and the mechanisms of wear were deduced and mathematic models linking tool life with process parameters were suggested.  相似文献   

17.
Cubic Nitride Boron (CBN) tools are generally used for machining harder alloys such as hardened high Cr steels, titanium and nickel alloys. The tools are expected to withstand the heat and pressure developed when machining at higher cutting conditions because of their high hardness and melting point. This paper evaluates the performance of different CBN tool grades in finish turning Ti–6Al–4V (IMI 318) alloy at high cutting conditions, up to 250 m min−1, with various coolant supplies. Tool wear, failure modes, cutting and feed forces and surface roughness of machined surfaces were monitored and used to access the performance of the cutting tools. Comparative trials were carried out with uncoated carbide tools when machining at a speed of 150 m min−1. Test results show that the performance of CBN tools, in terms of tool life, at the cutting conditions investigated is poor relative to uncoated carbide tools, as expected and often, reported due probably to rapid notching and excessive chipping of the cutting edge associated with a relatively high diffusion wear rate that tends to weaken the bond strength of the tool substrate. An increase in the CBN content of the cutting tool also led to a reduction in tool life when machining at the cutting conditions investigated.  相似文献   

18.
切削参数是影响PCD刀具切削性能的主要因素。本文采用Element Six公司的SYNDITE CTH025型聚晶金刚石(PCD)复合片制成强化复合地板用切削刀具,进行了一系列加工强化复合地板耐磨层的切削实验。通过实验研究了切削参数对刀具切削力的影响,得出了切削力随切削参数的变化规律,指出随着切削深度的增加,PCD刀具切削力增加;进给速度的增加使切削力增加;切削速度的增加将会使切削力降低。同时,分析了切削参数对刀具磨损、工件加工质量以及加工效率的影响。最后,本文总结了采用PCD刀具加工强化复合地板时加工参数的选择原则,认为当n=6000r/min、f=10000mm/min能够实现较高的加工效率,并保证工件的加工质量。  相似文献   

19.
Design, fabrication and application of ceramic cutting tools are one of the important research topics in the field of metal cutting and advanced ceramic materials. In the present study, wear resistance of an advanced Al2O3/Ti(C,N)/SiC multiphase composite ceramic tool material have been studied when dry machining hardened tool steel and cast iron under different cutting conditions. Microstructures of the worn materials were observed with scanning electronic microscope to help analyze wear mechanisms. It is shown that when machining hardened tool steel at low speed wear mode of the kind of ceramic tool material is mainly flank wear with slight crater wear. The adhesion between tool and work piece is relatively weak. With the increase of cutting speed, cutting temperature increases consequently. As a result, the adhesion is intensified both in the crater area and flank face. The ceramic tool material has good wear resistance when machining grey cast iron with uniform flank wear. Wear mechanism is mainly abrasive wear at low cutting speed, while adhesion is intensified in the wear area at high cutting speed. Wear modes are dominantly rake face wear and flank wear in this case.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号