首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, Ba0.5Sr0.5Co0.8Fe0.2O3−δxSm0.2Ce0.8O1.9 (BSCF–xSDC, x = 0–60 wt.%) composite cathodes were prepared by soft chemical methods, and then examined for potential applications in lower temperature solid oxide fuel cells. Both DC polarization and AC impedance spectroscopy measurements indicated that the addition of SDC electrolyte into BSCF remarkably improved the electrochemical properties. The optimum composition was found to be BSCF–30SDC, which exhibited 5.5 times higher polarization current density and 15.1% polarization resistance, compared with the pure-phase BSCF cathode at 550 °C.  相似文献   

2.
Relaxor ferroelectric thin films of 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) deposited on platinized silicon substrates with and without template layers were studied. Perovskite phase (80% by volume) was obtained through proper selection of the processing conditions on bare Pt/Ti/SiO2/Si substrates. The films were initially grown at 300 °C using pulsed-laser ablation and subsequently annealed in a rapid thermal annealing furnace in the temperature range of 750-850 °C to induce crystallization. Comparison of microstructure of the films annealed at different temperatures showed change in perovskite phase formation and grain size etc. Results from compositional analysis of the films revealed that the films initially possessed high content of lead percentage, which subsequently decreased after annealing at temperature 750-850 °C. Films with highest perovskite content were found to form at 820-840 °C on Pt substrates where the Pb content was near stoichiometric. Further improvement in the formation of perovskite PMN-PT phase was obtained by using buffer layers of La0.5Sr0.5CoO3 (LSCO) on the Pt substrate. This resulted 100% perovskite phase formation in the films deposited at 650 °C. Dielectric studies on the PMN-PT films with LSCO template layers showed high values of relative dielectric constant (3800) with a loss factor (tan δ) of 0.035 at a frequency of 1 kHz at room temperature.  相似文献   

3.
An all alkoxide based sol–gel route was investigated for preparation of epitaxial La0.5Sr0.5CoO3 (LSCO) films on 100 SrTiO3 (STO) substrates. Films with 20–30 to 80–100 nm thickness were prepared by spin-coating 0.2–0.6 M (metal) solutions on the STO substrates and heat treatment to 800 °C at 2 °C min− 1, 30 min, in air. The films were epitaxial with a cube-on-cube alignment and the LSCO cell was strained to match the STO substrate of 3.905 Å closely; a and b = 3.894 Å and 3.897 Å for the 20–30 and 80–100 nm films, respectively. The c-axis was compressed to 3.789 Å and 3.782 Å for the 20–30 and 80–100 nm films, respectively, which resulted in an almost unchanged cell volume as compared to polycrystalline film and nano-phase powders prepared in the same way. The SEM study showed mainly very smooth, featureless surfaces, but also some defects. A film prepared in the same way on an -Al2O3 substrate was dense and polycrystalline with crystallite sizes in the range 10–50 nm and gave cubic cell dimensions of ac = 3.825 Å. The conductivity of the ca 30–40 nm thick polycrystalline film was 1.7 mΩcm, while the epitaxial 80–100 nm film had a conductivity of around 1.9 mΩcm.  相似文献   

4.
The oxygen-ion conducting ceramics Bi2VO5.5 and Bi2Cu0.1V0.9O5.35 were synthesized and deposited on several substrates by the pulsed laser deposition technique. Defect-free films of Bi2Cu0.1V0.9O5.35 were obtained on SrTiO3 substrates, while films of Bi2VO5.5 exhibited severe cracking. Reasons for the different results are discussed.  相似文献   

5.
The crystal structure, thermal expansion and electrical conductivity of the solid solution Nd0.7Sr0.3Fe1−xCoxO3 for 0≤x≤0.8 were investigated. All compositions had the GdFeO3-type orthorhombic perovskite structure. The lattice parameters were determined at room temperature by X-ray powder diffraction (XRPD). The pseudo-cubic lattice constant decreased continuously with x. The average linear thermal expansion coefficient (TEC) in the temperature range from 573 to 973 K was found to increase with x. The thermal expansion curves for all values of x displayed rapid increase in slope at high temperatures. The electrical conductivity increased with x for the entire temperature range of measurement. The calculated activation energy values indicate that electrical conduction takes place primarily by the small polaron hopping mechanism. The charge compensation for the divalent ion on the A-site is provided by the formation of Fe4+ ions on the B-site (in preference to Co4+ ions) and vacancies on the oxygen sublattice for low values of x. The large increase in the conductivity with x in the range from 0.6 to 0.8 is attributed to the substitution of Fe4+ ions by Co4+ ions. The Fe site has a lower small polaron site energy than Co and hence behaves like a carrier trap, thereby drastically reducing the conductivity. The non-linear behaviour in the dependence of log σT with reciprocal temperature can be attributed to the generation of additional charge carriers with increasing temperature by the charge disproportionation of Co3+ ions.  相似文献   

6.
In this study, the LSCO (lanthanum strontium cobalt oxide) family has been investigated for thin film thermocouple applications. Thin films of La(1−x)SrxCoO3 (x=0.3,0.5,0.7) were prepared on sapphire substrates by pulsed laser deposition. The films were annealed at different temperatures in air and characterized for phase, composition and microstructure to determine their thermal stability. From the phase and composition analyses, it is clear that as the Sr content in LSCO increases, the thermal stability decreases. Among the three compositions studied, x=0.3 had the best phase and chemical stability, and microstructural properties. It was observed that La0.7Sr0.3CoO3 possesses excellent phase, composition and microstructural stability up to 1273 K. Above 1273 K, however, LSCO decomposes resulting in the loss of cobalt and formation of individual oxide phases. Electrical resistivity and Seebeck coefficients were measured in situ as a function of temperature in air up to 1023 K. The electrical and Seebeck coefficient properties were found to be stable for all the three compositions up to 1023 K and studies indicated that electrical conduction occurs through a small polaron hopping mechanism. In conclusion, LSCO possessed good thermal stability in air up to 1273 K and exhibits excellent potential in thin film thermocouple applications.  相似文献   

7.
Synthesis conditions of La2Mo2O9 thin film by radio frequency (RF) sputtering technique on Al2O3 ceramic substrates are studied. It is found that the deposition temperature and oxygen partial pressure are the most important factors for obtaining pure La2Mo2O9 films. Varying both parameters, Mo-rich, stoichiometric, and Mo-deficient films are obtained. With increasing the La:Mo ratio, films become denser. A crust layer is observed on top of the Mo-rich and the Mo-deficient films. The formation of the La2Mo2O9 phase is discussed with respect to the sputtering mechanism.  相似文献   

8.
Z.H. Sun  H.B. Moon  J.H. Cho 《Thin solid films》2010,518(12):3417-3421
We report on the effect of La0.5Sr0.5CoO3 (LSCO) bottom electrode to the dielectric properties of CaCu3Ti4O12 (CCTO) thin films grown on Ir/Ti/SiO2/Si substrates. Compared with the films grown directly on Ir/Ti/SiO2/Si substrates, the dielectric constant has been increased greatly about 100%, and the dielectric loss decreased to lower than 0.2 in the frequency range of 1-100 kHz. The origin has been discussed in details based on the analysis of the X-ray diffraction and impedance spectra measurements. Results of the impedance spectra suggest that the absence of undesired interfacial layer between Ir/CCTO thin films might be one of the major reasons of the improvement of the dielectric properties when the LSCO was introduced as the bottom electrode.  相似文献   

9.
In the present work, the AC magnetoimpedance effect in La0.7Ca0.3MnO3−δ at various temperatures are investigated. The peak of the metal–insulator transition occurs in the temperature dependence of impedance. Negative magnetoimpedance effect in the La0.7Ca0.3MnO3−δ is obtained at frequencies f≤10 MHz. In the magnetoimpedance effect of manganites, the magnetic field not only decreases the permeability μt, but also reduces the resistivity ρ by aligning the local spins and varying the transfer integral tij. The AC magnetoimpedance participated by the DC colossal magnetoresistance (CMR) in manganites, should be connected with the combined effects of double exchange interaction, electron–phonon coupling and skin effect.  相似文献   

10.
The spinel phase compounds with the composition of LiMn2−δVδOy were prepared by solid reaction of the mixture of LiNO3·H2O, MnCO3 and NH4VO3 powders. Evolution of the crystalline phases of the samples versus the vanadium content was analyzed using X-ray diffraction (XRD) technique, EPR and FT-IR spectroscopes. Cubic spinel is the predominant phase in the powders under heat treatment at 550 °C for 5 h. The valence state of manganese ion changed from +4 to +3 with vanadium substitution for charge compensation. The vanadium substitution of manganese leads the decline in capacity and cyclic behavior of the powders. The electrochemical behaviors relating to the variation of structure corresponding to the vanadium substitution were discussed.  相似文献   

11.
Highly epitaxial La0.5Ba0.5CoO3 (LBCO) thin films with sharp interface and a thickness of 200 nm were epitaxially grown on (001) SrTiO3 substrates using pulsed laser deposition. High-resolution transmission electron microscopy and electron diffraction analysis revealed that the films have a triple-layered structure. The first layer, close to the film/substrate interface, has a thickness of ~ 6 nm and is a defect free single crystal disordered cubic structure (a = 3.882 Å) which has a lattice mismatch of − 0.59% with respect to the substrate. The second layer which dominates the film structure has a single crystal disordered cubic structure (a = 3.854 Å) which has a lattice mismatch of − 1.31% with respect to the substrate. The third layer located on the top of the film has a thickness of several nanometers and consists of 112-type ordered tetragonal structure. The cubic structures in the first and second layer have an orientation relationship of (001)LBCO//(001)STO and < 100 > LBCO//< 100 > STO with respect to the substrate. Self-patterned 3-dimensional nano structures with a dimension range from 2 to 10 nm were formed in the second and third layers. These nano structures were formed by the enclosure of anti-phase boundary planes which are parallel to the {100} of the cubic structure. Epitaxial LBCO thin films with such nano structures are hard ferromagnetic with a large coercive field value and magnetoresistance effect value (~ 24%), and exhibit semiconductor behavior at temperatures < 300 K.  相似文献   

12.
Gadolinium-doped, yttrium oxide thin films have been deposited on silicon (001) substrates by radio-frequency (RF) magnetron reactive sputtering that exhibit cathodoluminescence (CL) at ultraviolet frequencies. The maximum CL brightness occurred at λ314–315 nm characteristic of the 6P3 / 2 → 8S (λ = 314 nm) transition observed in Gd-doped, yttrium oxide powders. The radiative recombination takes place at the rare earth activator Gd3+ site embedded in the Y2O3−δ host; the optical transition resides within the band gap of the Y2O3−δ host and the transition observed is characteristic of atomic gadolinium. A combinatorial approach to sputtering was used to deposit a film of variable composition from 1 to 23 at.% Gd in Y2O3−δ in order to rapidly discern the composition node of optimal CL brightness. A simulation was created for the purpose of predicting the film combinatorial composition for binary and ternary alloys prior to sputtering experiments in order to facilitate our combinatorial thin film synthesis technique. The model prediction varied from the real experimental composition profile by only 2.2 at.% Gd ± 1.6 at.% proving the predictor as a useful aide to complement combinatorial thin film experiments. A film of composition Y1.56Gd0.44O3.25 (8.3 at.% Gd) yielded the maximum CL brightness. CL brightness increased continuously up to the 8.3 at.% Gd composition due to the increased number of activators present in the host. Beyond this composition the brightness drastically decreased. The oxygen composition in the combinatorial film was strongly dependent on the Gd composition; films were sub-stoichiometric δ > 0 below 6 at.% Gd and was over-stoichiometric δ < 0 beyond this composition.  相似文献   

13.
We report a simple approach of fabricating thermoelectric γ-NaxCoO2 film with the c-axis orientation using the sol–gel spin-coating method. The inferred sodium content is x = 0.65 according to the correlation between the c-axis lattice constant and x. Temperature dependence of both the resistivity and thermopower resembles that of the γ-Na0.68CoO2 film grown by the reactive solid-phase epitaxy. The fitted thermopower data show that the bandwidth of γ-NaxCoO2 is found to be ~ 101 meV, being close to the quasi-particle band (70–100 meV) derived from an angle-resolved photoemission study of γ-Na0.7CoO2. These results enable the possibility of low-cost fabrication of γ-NaxCoO2-based thermoelectric film devices. Furthermore, we have also topotactically transformed the of γ-NaxCoO2 film to a superconducting Nax(H2O)yCoO2-δ film with Tc, onset = 4.12 K.  相似文献   

14.
La1−xCaxVO3 composition-spread film library was fabricated by combinatorial pulsed laser deposition and their thermoelectric properties were evaluated paralelly by the multi-channel probes of Seebeck coefficient and electric conductivity. Concurrent X-ray analysis verified the formation of solid soluted films in the full composition range (0x1) as judged from the linear variation of the lattice constants. The Seebeck coefficients of La1−xCaxVO3 changed from a large negative value to almost zero with the increase of x, due presumably to the variation of valence in vanadium ions.The power factor in this library was as high as 0.6 μW/cm K2, which was obtained at x=0, i.e. pure LaVO3 grown at 800 °C.  相似文献   

15.
Oxygen non-stoichiometry, electrical conductivity and thermal expansion of La2−xSrxNiO4−δ phases with high levels of strontium-substitution (1 ≤ x ≤ 1.4) have been investigated in air and oxygen atmosphere in the temperature range 20–1050 °C. These phases retain the K2NiF4-type structure of La2NiO4 (tetragonal, space group I4/mmm). The oxygen vacancy fraction was determined independently from thermogravimetric and neutron diffraction experiments, and is found to increase considerably on heating. The electrical resistivity, thermal expansion and cell parameters with temperature show peculiar variations with temperature, and differ notably from La2NiOδ in this respect. These variations are tentatively correlated with the evolution of nickel oxidation state, which crosses from a Ni3+/Ni4+ to a Ni2+/Ni3+ equilibrium on heating.  相似文献   

16.
In this paper, simple chemical solution deposition method is used to prepare La0.95Sr0.05CoO3 thin films on SrTiO3 (001) substrates by acetate-based precursors. The derived film is characterized by x-ray diffraction, field-emission scanning electron microscopy and transmission electronic microscopy. The derived film is epitaxial growth with < 001>[100] La0.95Sr0.05CoO3||<001>[100] SrTiO3, indicating that the chemical solution deposition is an effective route to obtain the cobalt-based films. The resistivity, Seebeck coefficient and thermal power factor are 0.05Ω cm, 250 μV/K and 0.21 mWK− 2m− 1 at 300 K, respectively, which is higher than these of the ceramics, indicating epitaxial thin film is an effective route to enhance the thermoelectric properties of La0.95Sr0.05CoO3.  相似文献   

17.
The phase relations in CeO2–Eu2O3 and CeO2–Sm2O3 systems have been established under slow-cooled conditions from 1400 °C. The two-phase relations differ as the CeO2–Eu2O3 system showed only two monophasic phase fields, namely F-type cubic and C-type cubic, whereas CeO2–Sm2O3 system showed three phase fields namely F-type cubic, C-type cubic and a biphasic field comprising of C-type cubic and monoclinic phase. An interesting observation of this investigation is the stabilization of C-type rare-earth oxide after Ce4+ substitution, which is attributed to decrease in average cationic size on Ce4+ substitution at RE3+ site. The lattice thermal expansion behavior of F-type solid solution and C-type solid solution in CeO2–Eu2O3 system was investigated by high-temperature XRD.  相似文献   

18.
Ti1−xVxO2 solid solution film photoelectrodes were prepared by the dip-coating sol–gel method. X-ray diffraction and X-ray photoelectron spectroscopy were employed to ensure the formation of the solid solution and their composition. Obvious photoresponses were observed in the visible region for the solid solution film electrodes with x0.05 and the red shift of the photoresponse was enhanced with increasing x. Moreover, the solid solution film electrodes were found to be photoelectrochemically stable. However, the onset potential of photocurrent shifted positively with increasing x. Band model of the solid solution was suggested to explain the effects of the vanadium incorporation on the photoelectrochemical properties.  相似文献   

19.
Electrostatic spray deposition (ESD) technique was used to fabricate dense Y2O3-doped BaZrO3 (BYZ) thin films, which have been extensively studied for the protonic ceramic fuel cell electrolyte. Effects of the ESD process parameters (i.e. substrate temperature, type of precursor, flow rate and applied voltage) on the microstructure of as-deposited films were studied. The uniform as-deposited films were obtained using a mixture of zirconium acetylacetonate, barium chloride dihydrate and yttrium chloride hexahydrate precursors in a solvent mixture of butyl carbitol and deionized water at a volume ratio of 50:50. The optimum deposition parameters were obtained at the substrate temperature of 250 °C with the applied voltage and flow rate in a range of 10-12 kV and 1.4-2.8 ml/h, respectively. The as-deposited films were subsequently annealed at 1350 °C for 10 h to ensure the complete chemical reactions of the precursors. X-ray diffraction patterns reveal the perovskite structures of the annealed BYZ films (deposited on yttria stabilized zirconia substrates) with only traces of Y2O3 phase, which could arise from the loss of BaO at high annealing temperatures.  相似文献   

20.
We have grown and characterized BaZr0.2Ti0.8O3 (BZT) epitaxial thin films deposited on (001) and (111)-oriented SrRuO3-buffered SrTiO3 substrates by pulsed laser deposition. Structural and morphological characterizations were performed using X-ray diffractometry and atomic force microscopy, respectively. A cube-on-cube epitaxial relationship was ascertained from the θ-2θ and φ diffractograms in both (001) and (111)-oriented films. The (001)-oriented films showed a smooth granular morphology, whereas the faceted pyramid-like crystallites of the (111)-oriented films led to a rough surface. The dielectric response of BZT at room temperature was measured along the growth direction. The films were found to be ferroelectric, although a well-saturated hysteresis loop was obtained only for the (001)-oriented films. High leakage currents were observed for the (111) orientation, likely associated to charge transport along the boundaries of its crystallites. The remanent polarization, coercive field, dielectric constant, and relative change of dielectric permittivity (tunability) of (111)-oriented BZT were higher than those of (001)-oriented BZT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号