首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The surf zone is the unique environment where ocean meets land and a place of critical ecological, economic, and recreational importance. In the United States, this natural resource is increasingly off-limits to the public due to elevated concentrations of fecal indicator bacteria and other contaminants, the sources of which are often unknown. In this paper, we describe an approach for calculating mass budgets of pollutants in the surf zone from shoreline monitoring data. The analysis reveals that fecal indicator bacteria pollution in the surf zone at several contiguous beaches in Orange County, California, originates from well-defined locations along the shore, including the tidal outlets of the Santa Ana River and Talbert Marsh. Fecal pollution flows into the ocean from the Santa Ana River and Talbert Marsh outlets during ebb tides and from there is transported parallel to the shoreline by wave-driven surf zone currents and/or offshore tidal currents, frequently contaminating >5 km of the surf zone. The methodology developed here for locating and quantifying sources of surf zone pollution should be applicable to a wide array of contaminants and coastal settings.  相似文献   

2.
Field studies were conducted to characterize the concentration vs streamflow relationships (or "flow fingerprints") of fecal pollution and suspended solids in stormwater runoff from the Santa Ana River watershed, the largest watershed in southern California. The concentrations of fecal indicator bacteria and F+ coliphages (viruses infecting E. coli) exhibit little-to-no dependence on streamflow rates, whereas the concentrations of total suspended solids (TSS) exhibit a very strong (power-law) dependence on streamflow rates. The different flow fingerprints observed for fecal pollutants, on one hand, and TSS, on the other hand, reflect different sources and transport pathways for these stormwater constituents. The flow-independent nature of fecal indicator bacteria and F+ coliphages is consistent with the idea that these contaminants are ubiquitously present on the surface of the urban landscape and rapidly partition into the surface water as the landscape is wetted by rainfall. The flow-dependent nature of TSS, on the other hand, is usually ascribed to the shear-induced erosion of channel bed sediments and/or the expansion of drainage area contributing to runoff. The apparent ubiquity of fecal indicator bacteria and F+ coliphages, together with the very high storm-loading rates of fecal indicator bacteria and the low detection frequency of human adenovirus and human enterovirus, suggest that fecal pollution in stormwater runoff from the Santa Ana River watershed is primarily of nonhuman waste origin.  相似文献   

3.
This paper describes a series of field studies aimed at identifying the spatial distribution and flow forcing of fecal indicator bacteria in dry and wet weather runoff from the Talbert watershed, a highly urbanized coastal watershed in southern California. Runoff from this watershed drains through tidal channels to a popular public beach, Huntington State Beach, which has experienced chronic surf zone water quality problems over the past several years. During dry weather, concentrations of fecal indicator bacteria are highest in inland urban runoff, intermediate in tidal channels harboring variable mixtures of urban runoff and ocean water, and lowest in ocean water at the base of the watershed. This inland-to-coastal gradient is consistent with the hypothesis that urban runoff from the watershed contributes to coastal pollution. On a year round basis, the vast majority (>99%) of fecal indicator bacteria loading occurs during storm events when runoff diversions, the management approach of choice, are not operating. During storms, the load of fecal indicator bacteria in runoff follows a power law of the form L approximately Qn, where L is the loading rate (in units of fecal indicator bacteria per time), Q is the volumetric flow rate (in units of volume per time), and the exponent n ranges from 1 to 1.5. This power law and the observed range of exponent values are consistent with the predictions of a mathematical model that assumes fecal indicator bacteria in storm runoff originate from the erosion of contaminated sediments in drainage channels or storm sewers. The theoretical analysis, which is based on a conventional model for the shear-induced erosion of particles from land and channel-bed surfaces, predicts that the magnitude of the exponent n reflects the geometry of the stormwater conveyance system from which the pollution derives. This raises the possibility that the scaling properties of pollutants in stormwater runoff (i.e., the value of n) may harbor information about the origin of nonpoint source pollution.  相似文献   

4.
The Santa Ana River (SAR), CA and adjacent wetlands have been identified as potential sources of fecal indicator bacteria (FIB) to the surf zone at Huntington Beach, CA. A suite of fecal steroids, including coprostanol (COP), epicoprostanol (eCOP), cholesterol (CHOE), cholestanol (CHOA), alpha-cholestanone (aONE), beta-cholestanone (bONE), beta-sitosterol (bSIT), stigmasterol (STIG), stigmastanol (STAN), and campesterol (CAM), were used as chemical markers to examine whether sewage was a significant source of FIB within the lower Santa Ana River watershed. A total of 54 water samples were collected from three locations in the intertidal zone near the mouth of the Santa Ana River at different tidal stages. Steroid ratios in SAR samples were different from those found in raw and treated sewage from a local wastewater treatment plant or in nearby effluent plume and did not appear to be influenced by the sampling location, daily tides, and spring/neap tidal cycle. The characteristics of steroid ratios suggested a diagenetic ratherthan a biogenic source forthe COP content of the samples. The log-based concentrations of COP and FIB in the SAR samples were not significantly correlated, inconsistent with sewage being the source of FIB in the study area. In addition, multivariate statistical analysis showed that the concentrations of FIB were better correlated with bird fecal steroids than with the typical sewage sterols. The results implied that sewage was not a significant source of fecal steroids, and therefore perhaps FIB to the study area. Instead, birds may be one possible source of the intermittently high levels of FIB observed in the lower Santa Ana River watershed and the nearby surf zone.  相似文献   

5.
The concentration of fecal indicator bacteria in the surf zone at Huntington Beach, CA, varies over time scales that span at least 7 orders of magnitude, from minutes to decades. Sources of this variability include historical changes in the treatment and disposal of wastewater and dry weather runoff, El Ni?o events, seasonal variations in rainfall, spring-neap tidal cycles, sunlight-induced mortality of bacteria, and nearshore mixing. On average, total coliform concentrations have decreased over the past 43 years, although point sources of shoreline contamination (storm drains, river outlets, and submarine outfalls) continue to cause transiently poor water quality. These transient point sources typically persist for 5-8 yr and are modulated by the phase of the moon, reflecting the influence of tides on the sourcing and transport of pollutants in the coastal ocean. Indicator bacteria are very sensitive to sunlight therefore, the time of day when samples are collected can influence the outcome of water quality testing. These results demonstrate that coastal water quality is forced by a complex combination of local and external processes and raise questions about the efficacy of existing marine bathing water monitoring and reporting programs.  相似文献   

6.
This study investigates the contribution of several marinas to fecal indicator bacteria impairment in Newport Bay, a regionally important tidal embayment in southern California. Three different fecal indicator bacteria groups were assayed, including total coliform, Escherichia coli, and enterococci bacteria, all measured using the IDEXX Colilert and Enterolert system. To document temporal variability in the fecal indicator bacteria signal, water column samples (n = 4132) were collected from two marinas over time scales ranging from hours to months. To document spatial variability of the fecal indicator bacteria signal, water column and sediment samples were collected from a number of sites (n = 11 to 36, depending on the study) in and around the two marinas, over spatial scales ranging from meters to kilometers. To identify the dominant temporal and spatial patterns in these data a statistical approach--Empirical Orthogonal Function analysis--was utilized. Finally, to clarify the transport pathways responsible for the observed temporal and spatial patterns, fecal indicator bacteria data were compared to simultaneous measurements of tidal flow, temperature, and salinity. The results of this field effort collectively implicate runoff--both dry weather runoff at sampling sites located near some storm drains and wet weather runoff at all sites--as a primary source of fecal indicator bacteria in the water column and subtidal sediments. The results and analysis presented here reinforce the growing body of evidence that management of fecal indicator bacteria impairment in the coastal waters of southern California will require developing long-term strategies for treating nonpoint sources of both dry weather and stormwater runoff.  相似文献   

7.
Shoreline concentrations of fecal indicator bacteria (FIB) and fecal indicator viruses (FIV) in Avalon Bay (Catalina Island, California) display a marked diurnal pattern (higher at night and lower during the day) previously attributed to the tidal flux of sewage-contaminated groundwater and the tidal washing of contaminated sediments, coupled with light and dark die-off of FIB and FIV (Boehm, et al., Environ. Sci. Technol. 2009, 43, 8046-8052). In this paper we document the existence of strong (peak velocities between 20 to 40 cm/s) transient currents in the nearshore waters of Avalon Bay that occur between 07:00 and 20:00 each day. These currents, which have a significant onshore component, are generated by anthropogenic activities in the Bay, including prop wash from local boat traffic and the docking practices of large passenger ferries. A budget analysis carried out on simultaneous measurements of FIB at two cross-shore locations indicates that anthropogenic currents contribute to the diurnal cycling of FIB concentrations along the shoreline, by transporting relatively unpolluted water from offshore toward the beach. The data and analysis presented in this paper support the idea that anthropogenic currents represent a significant, and previously overlooked, source of variability in shoreline water quality.  相似文献   

8.
The scientific literature presents conflicting assessments of whether tidal saltwater wetlands reduce or increase fecal indicator bacteria (FIB) impairment of marine bathing waters. In this paper we describe the use of a two end-member salinity-mixing model to calculate FIB treatment efficiencies for the Talbert Marsh, a tidal saltwater wetland in Orange County, California. The mixing model utilized FIB and salinity measurements (n = 10 716) collected during a three-year longitudinal study of the Talbert Marsh. Over the course of the study the marsh received progressively less dry weather surface water runoff from the surrounding urban landscape due to the implementation of a runoff interception and treatment program. As the volume of dry-weather runoff entering the marsh declined, the Talbert Marsh more efficiently removed one FIB group (total coliform) and became a significantly smaller source of two other FIB groups (Escherichia coli and enterococci bacteria). Hence, there may be a maximum volume of dry weather urban runoff (in this case < 1% of the average tidal prism of 2.35 x 10(5) m3/day) that a tidal saltwater wetland can receive, above which the wetland is a net source of FIB to coastal waters.  相似文献   

9.
Characterization of diel variability of fecal indicator bacteria concentration in nearshore waters is of particular importance for development of water sampling standards and protection of public health. Significant nighttime increase in Escherichia coli (E. coli) concentration in beach water, previously observed at marine sites, has also been identified in summer 2000 from fixed locations in waist- and knee-deep waters at Chicago 63rd Street Beach, an embayed, tideless, freshwater beach with low currents at night (approximately 0.015 m s(-1)). A theoretical model using wave-induced mass transport velocity for advection was developed to assess the contribution of surface waves to the observed nighttime E. coli replenishment in the nearshore water. Using average wave conditions for the summer season of year 2000, the model predicted an amount of E. coli transported from water of intermediate depth, where sediment resuspension occurred intermittently, that would be sufficient to have elevated E. coli concentration in the surf and swash zones as observed. The nighttime replenishment of E. coli in the surf and swash zones revealed here is an important phase in the cycle of diel variations of E. coli concentration in nearshore water. According to previous findings in Ge et al. (Environ. Sci. Technol. 2010, 44, 6731-6737), enhanced current circulation in the embayment during the day tends to displace and deposit material offshore, which partially sets up the system by the early evening for a new period of nighttime onshore movement. This wave-induced mass transport effect, although facilitating a significant base supply of material shoreward, can be perturbed or significantly influenced by high currents (orders of magnitude larger than a typical wave-induced mass transport velocity), current-induced turbulence, and tidal forcing.  相似文献   

10.
To protect bather health at recreational beaches, fecal indicator bacterial standards are used to monitor water quality, and waters exceeding the standards are subsequently closed to bathers. However beachgoers are also in contact with beach sands, the sanitary quality of which is not included within beach monitoring programs. In fact, sands and sediments provide habitat where fecal bacterial populations may persist, and in some cases grow, in the coastal zone. Specific pathogens are less well studied in beach sands and sediments, but there is a body of evidence that they too may persist in these environments. This paper reviews the current state of knowledge regarding the abundance and distribution of fecal indicator bacteria and pathogens in beach sands of diverse climatological regions, and at beaches subjected to varied levels of anthropogenic impact. In all regions fecal indicator bacteria are nearly ubiquitous in beach sands, and similar relationships emerge among fecal indicator abundance in dry sand, submerged sands, and water. Taken together, these studies contextualize a potential public health issue and identify research questions that must be addressed in order to support future policy decisions.  相似文献   

11.
Historical coliform measurements (n = 67,269; 32 years) in Newport Bay, a regionally important saltwater wetland and tidal embayment in southern California, have been compiled and analyzed. Coliform concentrations in Newport Bay decrease along an inland-to-ocean gradient, consistent with the hypothesis that this tidal embayment attenuates fecal pollution from inland sources. Nearly 70% of the variability in the coliform record can be attributed to seasonal and interannual variability in local rainfall, implying that stormwater runoff from the surrounding watershed is a primary source of coliform in Newport Bay. The storm loading rate of coliform from the San Diego Creek watershed--the largest watershed draining into Newport Bay--appears to be unaffected by the dramatic shift away from agricultural land-use that occurred in the watershed over the study period. Further, the peak loading of coliform during storms is larger than can be reasonably attributed to sources of human sewage, suggesting that nonhuman fecal pollution and/or bacterial regrowth contribute to the coliform load. Summer time measurements of coliform exhibit interannual trends, but these trends are site specific, apparently due to within-Bay variability in land-use, inputs of dry-weather runoff, and tidal mixing rates. Overall, these results suggest that efforts to improve water quality in Newport Bay will likely have greater efficacy during dry weather summer periods. Water quality during winter storms, on the other hand, appears to be dominated by factors outside of local management control; namely, virtually unlimited nonhuman sources of coliform in the watershed and global climate patterns, such as the El Nino Southern Oscillation, that modulate rainfall and stormwater runoff in southern California.  相似文献   

12.
Recreational marine beaches in California are posted as unfit for swimming when the concentration of fecal indicator bacteria (FIB) exceeds any of seven concentration standards. Finding and mitigating sources of shoreline FIB is complicated by the many potential human and nonhuman sources of these organisms and the complex fate and transport processes that control their concentrations. In this study, a three-tiered approach is used to identify human and nonhuman sources of FIB in Avalon Bay, a popular resort community on Catalina Island in southern California. The first and second tiers utilize standard FIB tests to spatially isolate the FIB signal, to characterize the variability of FIB over a range of temporal scales, and to measure FIB concentrations in potential sources of these organisms. In the third tier, water samples from FIB "hot spots" and sources are tested for human-specific bacteria Bacteroides/Prevotella and enterovirus to determine whether the FIB are from human sewage or from nonhuman sources such as bird feces. FIB in Avalon Bay appear to be from multiple, primarily land-based, sources including bird droppings, contaminated subsurface water, leaking drains, and runoff from street wash-down actvities. Multiple shoreline samples and two subsurface water samples tested positive for human-specific bacteria and enterovirus, suggesting that at least a portion of the FIB contamination is from human sewage.  相似文献   

13.
The classic model of pollutant transport in the surf zone of a long, sandy beach developed by Inman et al. (J. Geophys. Res. 1971, 76, 3493) is altered to account for first-order pollutant inactivation in an effort to understand how rip cell dilution and bacterial inactivation control the length of shoreline adversely impacted by microbial pollution from a point source. A dimensionless number gamma dictates whether physical processes (dilution of microbes in the surf zone by rip cell mixing) or biological processes (microbial inactivation) control the distribution of pollution along the shoreline. Estimates of gamma for beaches in Northern Orange County, California, indicate that dilution is the primary factor controlling total coliform levels surrounding two drains that release nuisance runoff directly onto the beach. It is also shown that, even when alongshore currents are fast, pollutant levels will drop e-fold at distances under 4000 m from the point source due to dilution alone. Because dilution is ultimately controlled by wave climate and shoreline morphology, the results suggest the strategic position of drains and other point sources in high dilution wave environments will reduce potential adverse effects on beach water quality. In addition, the results stress the importance of understanding hydrodynamics when conducting microbial source tracking at wave-dominated marine beaches.  相似文献   

14.
There are an increasing number of coastal ocean observing systems that deploy new technology for environmental sensing and stream these data in near-real-time to end-users (e.g., scientists and coastal managers) via the worldwide web. The temporal resolution, spatial coverage, and accessibility of these data open up new opportunities for better understanding and managing the coastal ocean, but they also present enormous challenges relative to data processing and data interpretation, particularly in cases where these data are to inform rapid management decision making. Here we demonstrate that changes in surf zone water quality at a popular beach in southern California are signaled by changes in the Fisher Information and Shannon Entropy of high frequency (1/4 min(-1)) measurements of salinity and temperature in the surf zone. These results support the hypothesis that the information content of environmental signals, such as salinity and temperature, can be used to identify changes in the water quality of the coastal ocean. More generally, the approach described here-of using information theory indices calculated from monitoring data as real-time indicators of environmental change-is quite general, and may therefore be applicable to other situations where rapid management decisions are based on high-frequency measurements of environmental parameters.  相似文献   

15.
Multi-tracer tests with three types of marine bacteriophages (H4/4, H6/1, and H40/1), together with various limnological methods, including physicochemical depth profiling, surface drifters, deep current measurements, and fecal indicator bacteria analyses, have been applied to characterize water circulation and pathogen transport in the Bay of Vidy (Lake Geneva, Switzerland). The experimental program was carried out twice, first in November 2005, when the lake was stratified, and a second time during holomixis in February 2006. The bacteriophages were injected at three points at different depths, where contaminated waters enter the lake, including the outlet pipe of a wastewater treatment plant, a river, and a stormwater outlet. Thereafter, water samples were collected in the lake at 2 m depth during a 48 h sampling campaign. The results demonstrate that (i) contaminated river water spreads rapidly in the bay; (ii) a well-developed thermocline is highly effective in preventing contamination from the depth to rise up to the surface; (iii) rapid vertical mixing and pathogen transport occur under thermally homogeneous conditions; and (iv) repeated multi-tracertests with bacteriophages are a powerful technique to assess water circulation and contaminant transport in lakes where high dilution occurs.  相似文献   

16.
Whenever measurements of fecal pollution in coastal bathing waters reach levels that might pose a significant health risk, warning signs are posted on public beaches in California. Analysis of historical shoreline monitoring data from Huntington Beach, southern California, reveals that protocols used to decide whether to post a sign are prone to error. Errors in public notification (referred to here as posting errors) originate from the variable character of pollutant concentrations in the ocean, the relatively infrequent sampling schedule adopted by most monitoring programs (daily to weekly), and the intrinsic error associated with binary advisories in which the public is either warned or not. In this paper, we derive a probabilistic framework for estimating posting error rates, which at Huntington Beach range from 0 to 41%, and show that relatively high sample-to-sample correlations (>0.4) are required to significantly reduce binary advisory posting errors. Public mis-notification of coastal water quality can be reduced by utilizing probabilistic approaches for predicting current coastal water quality, and adopting analog, instead of binary, warning systems.  相似文献   

17.
The effectiveness of a StormTreat system in treating stormwater from a commercial parking lot in Connecticut was evaluated. Flow-weighted composite samples were collected from StormTreat inflow and outflow during a 2-yr study. Bypass flow was not monitored. The StormTreat significantly (P < 0.05) reduced total suspended solids, total phosphorus, total Kjeldahl-N, total zinc, total copper, and fecal coliform bacteria on a concentration basis. The StormTreat system retained 49% total suspended solids, 74% total phosphorus, 44% total Kjeldahl-N, 45% total zinc, 29% total copper, 2% total lead on a mass basis, and 99% fecal coliform on a concentration basis. Treatment efficiency was not associated with storm size, chamber stage, discharge rate, or hydraulic retention time (r < 0.355). The system retained ammonia-N more efficiently during the summer than during the winter (P < 0.01) and retained total zinc less efficiently during the summer than during the winter (P < 0.05). Season did not significantly (P > 0.05) affect the treatment of other monitored water quality variables. The StormTreat system reduced the concentrations of stormwater pollutants commonly found in parking lot runoff.  相似文献   

18.
Nearshore waters in bays, harbors, and estuaries are frequently contaminated with human pathogens and fecal indicator bacteria. Tracking down and mitigating this contamination is complicated by the many point and nonpoint sources of fecal pollution that can degrade water quality along the shore. From a survey of the published literature, we propose a conceptual and mathematical framework, the "beach boundary layer model", for understanding and quantifying the relative impact of beach-side and bay-side sources of fecal pollution on nearshore water quality. In the model, bacterial concentration in ankle depth water C(ankle) [bacteria L(-3)] depends on the flux m' [bacteria L(-2) T(-1)] of fecal bacteria from beach-side sources (bather shedding, bird and dog feces, tidal washing of sediments, decaying vegetation, runoff from small drains, and shallow groundwater discharge), a cross-shore mass transfer velocity k [L T(-1)] that accounts for the physics of nearshore transport and mixing, and a background concentration C(bay) [bacteria L(-3)] attributable to bay-side sources of pollution that impact water quality over large regions (sewage outfalls, creeks and rivers): C(ankle) = m'/k + C(bay). We demonstrate the utility of the model for identifying risk factors and pollution sources likely to impact shoreline water quality, and evaluate the model's underlying assumptions using computational fluid dynamic simulations of flow, turbulence, and mass transport in a trapezoidal channel.  相似文献   

19.
Short-lived radium isotopes (223Ra and 224Ra) are used to investigate the potential association between groundwater discharge and microbial pollution at Huntington Beach, CA. We establish the tidally driven exchange of groundwater from the surficial beach aquifer across the beach face. Groundwater is found to be a source of nutrients (silica, inorganic nitrogen, and orthophosphate) to the surf zone, and these nutrients could possibly provide an environment for enhanced growth or increased persistence of fecal indicator bacteria (FIB). Ammonium and ortho-phosphate explain up to 12-20% of the variance in FIB levels in the surf zone. Elevated levels of FIB were only found in 1 of the 26 groundwater samples. However, FIB in the surf zone covary with radium at fortnightly, diurnal, and semi-diurnal tidal periods. In addition, radium accounts for up to 38% of the variance in log-FIB levels in the surf zone. A column experiment illustrates that Enterococcus suspended in Huntington Beach saline groundwater is not significantly filtered by sand collected from the field. This work establishes a mechanism for the subterranean delivery of FIB pollution to the surf zone from the surficial aquifer and presents evidence that supports an association between groundwater discharge and FIB.  相似文献   

20.
Recently, the role of diffuse inputs of perfluoroalkyl acids (PFAAs) into surface waters has been investigated. It has been observed that river loads increased during rain and that street runoff contained considerable loads of PFAAs. This study aims at quantifying these diffuse inputs and identifying the initial sources in a small nonindustrial river catchment. The river was sampled in three distinct subcatchments (rural, urban, and wastewater treatment plant) at high temporal resolution during two rain events and samples were analyzed for perfluorocarboxylates and perfluorosulfonates. Additionally, rain, stormwater runoff, wastewater effluent, and drinking water were sampled. PFAA concentrations in river water were all low (e.g., < 10 ng/L for perfluorooctanoate, PFOA), but increased during rainfall. PFAA concentrations and water discharge data were integrated into a mass balance assessment that shows that 30-60% of PFAA loads can be attributed to diffuse inputs. Rain contributed 10-50% of the overall loads, mobilization of dry deposition and outdoor release of PFAA from products with 20-60%. We estimated that within a year 2.5-5 g of PFOA originating from rain and surface runoff are emitted into this small catchment (6 km(2), 12,500 persons).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号