首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
本文利用实验室自制的固定化乳糖酶进行了制备低乳糖牛奶的初步研究。实验结果表明,制备的低乳糖牛奶乳糖的水解率达50%以上,口味香甜纯正,可以有效的预防人体乳糖不耐症的发生。  相似文献   

2.

β-半乳糖苷酶作为一种安全无毒的酶制剂,不仅广泛应用于食品工业领域中,而且在酶工程、蛋白质工程等生物技术领域也有着很大的应用潜力。微生物发酵法作为生产β-半乳糖苷酶的主流生产方法,仍存在发酵时间较长、提取率低等问题;而利用工程菌的异源表达系统生产β-半乳糖苷酶的方式具有表达量高、成本低等优点。本文对β-半乳糖苷酶异源表达系统的基因来源、表达宿主菌、表达方式以及β-半乳糖苷酶应用价值等进行阐述,旨在为新型β-半乳糖苷酶产品的开发利用提供科学依据与理论参考。

  相似文献   

3.
β-半乳糖苷酶经固定化后,其催化性能得到一定程度的改善。在各种反应条件相同的条件下,固定化酶的最适反应奈件与游离酶相比得到一定程度的拓宽:受反应温度变化的影响变小,pH从5.8~6.2扩宽至5.7-6.5;对乳糖的转化效率有了不少的提高,酶的稳定性也得到了加强。实验中固定化β-半乳糖苷酶重复使用28次,底物转化率均在45%以上,具备了一定实际应用能力。  相似文献   

4.
α-半乳糖苷酶催化α-半乳糖苷键的水解,可将豆制食品及饲料中的抗营养因子α-半乳糖苷类转化分解,改善营养成分使其易于消化吸收。近年,α-半乳糖苷酶的固定化更是成为研究的热点。作为固定化酶技术的重要组成部分,载体及固定化方法的选取在很大程度上直接影响着固定化酶的活性及稳定性。综述了近些年国内外有关α-半乳糖苷酶固定化方法、固定化载体材料的研究现状和发展趋势,以期对固定化α-半乳糖苷酶的酶活性及稳定性提高提供参考。  相似文献   

5.
《食品与发酵工业》2015,(5):105-109
以壳聚糖为载体、戊二醛为交联剂固定化β-半乳糖苷酶,通过单因素和正交实验探讨了固定化载体和固定化条件对酶固定化的影响。结果表明,固定化载体壳聚糖(脱乙酰度90%以上)的最适分子质量和体积分数分别为3×105和2%,制备的壳聚糖载体具有良好的成球性和机械强度。采用交联方式将β-半乳糖苷酶固定在壳聚糖微球上,在单因素试验的基础上,进行正交试验确定固定化条件为:交联剂戊二醛浓度和交联时间分别为10 g/L和1.0 h,酶浓度和固定化时间分别为1.5 mg/m L和12 h,最终制备的固定化酶的活力回收率达到70.5%。同时该固定化酶具有良好的储存稳定性和操作稳定性,具有一定的应用价值。  相似文献   

6.
双醛氧化纤维素固定化β-半乳糖苷酶   总被引:1,自引:0,他引:1  
以双醛氧化纤维素为载体固定化β-半乳糖苷酶,研究了固定化酶的制备条件、微观结构及酶学性质,结果表明:固定化时间为4 h,[酶]/[载体]=1:15(g:g)时,固定化酶的活力最高为0.517 U/g。红外光谱和扫描电镜对固定化酶的微观结构研究表明,双醛氧化纤维素的醛基与β-半乳糖苷酶的氨基发生共价反应形成固定化酶。与游离酶相比,β-半乳糖苷酶经过固定化后热稳定性和耐酸碱性增强,米式方程分析表明,β-半乳糖苷酶经固定化后与底物的亲和力降低,固定化酶重复使用5次后,相对酶活力为63%。  相似文献   

7.
乳制品富含优质蛋白质、乳脂、乳糖等营养成分和钙、磷、钾等矿物质及多种维生素,同时含有多种免疫物质、酶及激素等具有生理活性调节功能的生物活性物质,且消化率和吸收率极高,被成为人体的"白色血液",是目前发现的最理想的天然食品。近年来,我国乳业发展非常迅速,但与世界平均水平仍存在巨大的差距,制约我国乳业发展的一个重要原因就是乳糖不耐症。如利用β-半乳糖苷酶对牛奶进行水解,可通过水解反应生成易被人体吸收的葡萄糖和半乳糖,其中部分半乳糖在β-半乳糖苷酶的作用下合成6%8%的"双歧因子"低聚半乳糖。低乳糖牛奶不仅提高了牛奶的营养价值,缓解乳糖不耐症的症状,提高钙的吸收利用率,而且含有的低聚半乳糖还可以促进体内益生菌群的增殖,减少肠道内有害物质的生成。  相似文献   

8.
主要论述了用生物技术生产β-半乳糖苷酶以及此酶在生物技术各个方面的应用。报道了β-半乳糖苷酶在研究和应用上的一些新领域和新进展。  相似文献   

9.
研究利用具有转糖基活性的β-半乳糖苷酶生产含低聚半乳糖的低乳糖牛奶。含低聚半乳糖的低乳糖牛奶既能解决乳糖不耐症问题,同时还在牛奶中增添了低聚半乳糖双歧因子。从Enterobacter sp.B5的无细胞抽提液中,利用硫酸铵沉淀制备具有转糖基活性的β-半乳糖苷酶,作用鲜牛奶生成含低聚半乳糖的低乳糖牛奶。利用薄层层析、高压液相色谱技术和软件NIHImageJ1.36分析了反应产物中的糖组分(葡萄糖、半乳糖、乳糖和低聚糖(包括转移二糖和三糖))。结果显示酶作用后的鲜牛奶中大约70%的乳糖转化为葡萄糖和半乳糖,至少10%的乳糖通过转糖基反应生成低聚半乳糖。在酶浓度为3U/ml,50℃酶解4h的反应条件下,获得含低聚半乳糖的低乳糖牛奶的糖组成为0.59%低聚半乳糖(含0.37%转移二糖和0.22%三糖),1.33%乳糖,2.83%单糖。本研究利用软件NIHImageJ1.36定量分析样品糖组分的TLC结果,可以避免乳糖的同分异构体.转移二糖在高压液相色谱结果中因无法分离而造成的漏检。  相似文献   

10.
海藻酸钙固定化β-半乳糖苷酶催化合成低聚半乳糖   总被引:4,自引:0,他引:4  
研究了强化海藻酸钙固定化β-半乳糖苷酶的方法以及固定化酶的性质,并用于制备低聚半乳糖。研究表明,用海藻酸钙包埋、戊二醛进行交联、对β-半乳糖苷酶进行固定,方法简便、酶的活力回收率高。所得固定化酶强度和活力高,对热、pH值耐受范围较游离酶宽,最佳反应温度和pH与游离酶相同,且贮存稳定性好。以乳糖为原料,用海藻酸钙固定化β-半乳糖苷酶催化合成低聚半乳糖,随着时间的延长,低聚半乳糖合成率呈抛物线变化。在温度55℃、pH6.0、乳糖浓度40%、反应时间为30h时,低聚半乳糖的合成率达最大值36.37%。  相似文献   

11.
牛奶及乳制品营养丰富,容易消化吸收,人称"白色血液",是最理想的天然食品。近年来我国乳业发展迅速,但与世界平均水平仍存在巨大的差距,制约我国乳业发展的一个重要原因就是乳糖不耐症。利用β-半乳糖苷酶对牛奶进行水解可生成易被人体吸收的葡萄糖、半乳糖及"双歧因子"低聚半乳糖,不仅能解决乳糖不耐症问题,还能增加牛奶的营养价值。本文在单因素初步试验的基础上,以低聚半乳糖合成率为响应指标,通过响应分析法对低乳糖水解工艺进行优化。结果表明,当反应温度为45.3℃、加酶量为2.5mL及反应时间为69.7min时,低聚半乳糖得率达到最大值6.15%。通过乳果糖试剂盒测定水解后低乳糖奶中乳果糖含量,平均含量为158.17mg/L。  相似文献   

12.
The effects of heat treatments of milk and whey prior to lactose hydrolysis with Kluyveromyces lactis beta-galactosidase were studied. It was observed that heat treatment of milk significantly increases lactase activity, with a maximum activity increase found when milk was heated at 55 degrees C. In whey from 55 up to 75 degrees C, beta-galactosidase activity decreased slightly. Nevertheless, heating whey at 85 degrees C for 30 min raised the rate of hydrolysis significantly. Electrophoretic patterns and UV spectra proved that the activity change correlated with milk protein denaturation, particularly that of beta-lactoglobulin. Heating whey permeate did not increase the enzyme activity as heating whole whey; but heating whey prior to ultrafiltration also resulted in enzyme activation. Measurement of free sulfhydryl (SH) groups in both whey and heated whey permeate showed that the liberation of free SH is highly correlated to the change of the activity. Furthermore, this activation can be reversed by oxidizing the reactive sulfhydryl groups, proving that the observed effect may be related to the release of free SH to the medium, rather than to the denaturation of a thermolabile protein inhibitor.  相似文献   

13.
脂肪酶是一种羧酸酯水解酶,被广泛应用于食品,制药,洗涤剂和化妆品工业上。而酶的固定化是在催化过程中提高酶的稳定性和重复利用性的一种技术。本文综述了脂肪酶的固定化以及固定化脂肪酶的酶学性质的研究进展。   相似文献   

14.
Permeabilized microbial cells can be used as a crude enzyme preparation for industrial applications. Immobilization and process recycling can compensate for the low specific activity of this preparation. For biomass immobilization, the common support is alginate beads; however, its low surface area and the low biomass concentration limit the activity. We here describe a biocatalyst consisting of a paste of permeabilized Kluyveromyces lactis cells gelled with manganese alginate over a semicircular stainless steel screen. A ratio of wet permeabilized biomass to alginate of 50:4 (wt/wt) resulted in a paste with maximum immobilized beta-galactosidase activity and maximum gel biomass retention. The biocatalysts retained activity better when stored in milk at 4 degrees C than in 50% glycerol. The unused biocatalysts stored in milk did not lose activity after 50 d. However, repeated use of the same biocatalyst 40 times resulted in almost 50% loss of activity. A bioreactor design with two different conditions of operation were tested for milk lactose hydrolysis using this biocatalyst. The bioreactor was operated at 40 degrees C as packed bed or with recirculation, similar to a continuous stirred tank reactor. The continuous system with recirculation resulted in 82.9% lactose hydrolysis at a residence time of 285.5 min (flow of 2.0 ml/min), indicating the potential of this system for processing low lactose milk, or even in processing other substrates, using an appropriate biocatalyst.  相似文献   

15.
A hydrogel based on chitosan was employed for the immobilisation of lactase with the aim of hydrolysing lactose and producing low-dosage lactose milk. The degree of swelling of the hydrogel was affected by the type of aqueous solution, pH and temperature. The lactase immobilisation capacities at pH 4.0 and pH 7.0 were 257.12 ± 3.18 and 157.87 ± 1.96 mg enzyme per g dried hydrogel, respectively, after 1440 min at room temperature. The activity of immobilised lactase ranged from 97.91 to 56.04 and 97.91 to 71.80% from the first to the tenth cycle of hydrolysis of standard lactose and lactose contained in UHT milk, respectively. Immobilised lactase in hydrogel could be applied for the production of low-dosage lactose milk for at least ten successive hydrolysis cycles. Moreover, hydrogels containing immobilised lactase could also be useful for the enzyme release in individuals with lactose intolerance.  相似文献   

16.
The correct labelling of dairy foods as “lactose-free” requires a suitably sensitive and valid analytical method for the quantification of lactose in complex food matrices. Thus, an ion-pair RP-HPLC method for the simultaneous determination of lactose, glucose and galactose in original skim milk was investigated. The samples derived from an enzymatic lactose hydrolysis approach (0.5 L) using the commercial β-galactosidase Godo-YNL2. After derivatisation with p-aminobenzoic acid and sodium cyanoborohydride, the samples were injected on a RP-C18 column. Tetrabutylammonium hydrogen sulphate was used as the ion-pair reagent in the eluent system. The sugars were quantified using photometric- (UV; 303 nm) and fluorescence-detection (λex 313 nm, λem 358 nm). The overall run time was 27 min. The limits of detection (LOD) were estimated at 2 mg L−1 (UV detection) and at 0.13 mg L−1 (fluorescence detection). The limits of quantification were 6 mg L−1 (UV detection) and 0.45 mg L−1 (fluorescence detection). Thus, this analytical method is suitable for sensitive lactose quantification in milk systems of less than 10 mg L−1.  相似文献   

17.
牛奶及乳制品营养丰富,容易消化吸收,人称“白色血液”,是最理想的天然食品.近年来我国乳业发展迅速,但与世界平均水平仍存在巨大的差距,制约我国乳业发展的一个重要原因就是乳糖不耐症.利用β-半乳糖苷酶对牛奶进行水解可生成易被人体吸收的葡萄糖、半乳糖及“双歧因子”低聚半乳糖,不仅能解决乳糖不耐症问题,还能增加牛奶的营养价值.在单因素初步试验的基础上,以低聚半乳糖合成率为响应指标,通过响应分析法对低乳糖水解工艺进行优化.结果表明,当反应温度为45.3℃、加酶量为2.5ml及反应时间为69.7min时,低聚半乳糖得率达到最大值6.15%.通过乳果糖试剂盒测定水解后低乳糖奶中乳果糖含量,平均含量为158.17mg/L.  相似文献   

18.
利用固定化乳糖酶连续生产低乳糖乳的研究   总被引:1,自引:0,他引:1  
利用离子交换树脂D151固定黑曲霉来源乳糖酶,研究固定化酶的酶学特性,优化水解牛乳的工艺条件,以期改善乳糖酶的性质,达到连续生产低乳糖乳的目的.结果表明:固定化酶的最适作用温度和热稳定性与游离酶相比均有所降低.固定化酶最适pH与游离酶相比稍向碱性移动;两者酸碱稳定性有较大差异.金属离子对游离酶和固定化酶水解的抑制或激活作用有较大差异.固定化酶与游离酶相比,对乳糖的Km值稍有升高;低温贮存稳定性稍有增强;在牛奶的天然pH(约为6.5)条件下使用更为适宜.在填充床反应器中,固定化酶连续生产低乳糖乳的最佳条件为:温度为50℃,底物空间流速为1.5h-1,可获得79.7%的乳糖水解率.每隔20h清洗反应柱,固定化酶在10d内生产的乳糖水解乳符合低乳糖乳的要求.固定化乳糖酶连续使用半衰期约为22d.该研究为工业化利用固定化酶连续生产低乳糖乳提供了技术依据.  相似文献   

19.
β-Galactosidase, commonly named lactase, is one of the most important enzymes used in dairy processing; it catalyzes the hydrolysis of lactose to its constituent monosaccharides glucose and galactose. Here, a thermostable β-galactosidase gene bgaB from Bacillus stearothermophilus was cloned and expressed in B. sub-tilis WB600. The recombinant enzyme was purified by a combination of heat treatment, ammonium sulfate fractionation, ion exchange, and gel filtration chromatography techniques. The purified β-galactosidase appeared as a single protein band in sodium dodecyl sulfate-PAGE gel with a molecular mass of approximately 70 kDa. Its isoelectric point, determined by polyacryl-amide gel isoelectric focusing, was close to 5.1. The optimum temperature and pH for this β-galactosidase activity were 70°C and pH 7.0, respectively. Kinetics of thermal inactivation and half-life times for this thermostable enzyme at 65 and 70°C were 50 and 9 h, respectively, and the Km and Vmax values were 2.96 mM and 6.62 μmol/min per mg. Metal cations and EDTA could not activate this thermostable enzyme, and some divalent metal ions, namely, Fe2+, Zn2+, Cu2+, Pb2+, and Sn2+, inhibited its activity. Thiol reagents had no effect on the enzyme activity, and sulfhydryl group blocking reagents inactivated the enzyme. This enzyme possessed a high level of transgalactosylation activity in hydrolysis of lactose in milk. The results suggest that this recombinant thermostable enzyme may be suitable for both the hydrolysis of lactose and the production of galactooligosaccharides in milk processing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号