首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 281 毫秒
1.
本文将牛奶过敏原β-乳球蛋白抗原分别免疫新西兰大白兔和BALB/c小鼠制备其多克隆抗体和单克隆抗体,并对所获得的抗体进行了效价等特性测定;采用蛋白A亲和层析法将多克隆抗体进行了纯化,采用辛酸-硫酸铵法对单抗细胞株3A7进行了纯化;实验建立了双抗体夹心的ELISA检测方法,并对一些蛋白样品进行了初步的检测。实验结果表明,所制备的抗β-乳球蛋白兔多克隆抗体效价达到了1:6.56×106;Western-blotting鉴定结果显示所制备的多克隆抗体能够与β-乳球蛋白特异性反应;3株单抗的效价均在106以上,纯化后多抗仅与酪蛋白有一定的交叉反应,而纯化后单抗与乳中主要蛋白及其它过敏原蛋白基本没有交叉反应,特异性很好;利用所建立的方法对一些蛋白样品进行检测,准确率100%。  相似文献   

2.
牛奶过敏原PCR检测方法的建立   总被引:1,自引:0,他引:1  
牛奶是主要的食品过敏原之一,其中β-乳球蛋白是引起牛奶过敏的主要成分。基于牛奶β-乳球蛋白基因序列设计一对PCR引物,经过反应条件的优化,建立了适合检测牛奶β-乳球蛋白过敏原的PCR方法。实验结果表明,当PCR反应体系中模板DNA量为25ng,引物浓度为4mmol/L时,检测效果最佳。所建立的方法不仅可用于不同保质期、不同来源牛奶β-乳球蛋白过敏原的测定,亦可用于牛、羊奶不同比例混合物中β-乳球蛋白过敏原的检测。  相似文献   

3.
目的制备与鉴定牛奶主要过敏原β-乳球蛋白(β-LG)的单克隆抗体,并建立双抗体夹心检测法。方法以β-LG为抗原免疫BALB/c小鼠,融合免疫鼠脾细胞和小鼠骨髓瘤NS-1。半固体培养基法结合有限稀释法筛选稳定分泌抗体的杂交瘤细胞株。杂交瘤细胞株诱生小鼠腹水,采用蛋白A亲和层析法获得纯化抗体。利用Ig类与亚类鉴定试剂盒鉴定该单克隆抗体的Ig亚型。间接ELISA方法和Western Blot鉴定抗体效价和特异性以及与其他过敏原的交叉反应性。建立双单克隆抗体夹心法,检测β-LG。结果共获得抗β-LG细胞株6株,分别命名为1H8,4A7,4C3,1F9,1G5,3D11,效价均高于20万。经抗体亚型鉴定,6株抗体均为Ig G1型。Western Blot的结果表明6株抗体能识别β-LG。在特异性检测实验中,6株抗体与其他种类食物过敏原无交叉反应,而1G5和3D11与牛奶酪蛋白过敏原有交叉反应性。通过建立双单克隆抗体夹心ELISA法,发现牛奶β-LG蛋白的检出低限为:15.625 ng/m L,标准曲线在15.625~250 ng/m L范围内线性良好。结论获得高效价抗体6株,建立了高效、高特异性的牛奶过敏原β-LG的检测方法,为食品中牛奶过敏原的检测提供了依据。  相似文献   

4.
β-乳球蛋白(β-LG)是牛乳中重要的天然活性营养物质,也是牛乳中主要的过敏原之一。β-乳球蛋白约为乳清蛋白总量的50%,是牛乳中主要的乳清蛋白,具有较强的热敏感性和致敏性,在优质乳品工业中起关键作用。其不仅作为牛奶热处理强度的评估指标,还作为食品中牛乳过敏原的标志蛋白,有效识别和检测牛乳β-乳球蛋白非常重要。已报道的牛乳β-乳球蛋白有13种变异体,其中A和B是牛乳β-LG的常见变异体,且含量最高。根据不同的检测原理,文章简述近年来牛乳β-乳球蛋白变异体的三大类检测方法,总结电泳法、色谱法和免疫法的原理、优缺点及部分应用实例,重点介绍液相色谱法和毛细管电泳法两种定量方法,并展望牛乳β-乳球蛋白未来的发展方向。  相似文献   

5.
食物过敏原水牛乳β-乳球蛋白的交叉反应研究   总被引:1,自引:0,他引:1  
β-乳球蛋白是乳清中一种主要蛋白质,而且是乳中主要过敏原之一.本研究探讨β-乳球蛋白与其它蛋白的免疫交叉反应性.采用间接ELISA法和免疫印迹的方法,利用β-乳球蛋白和相应的多克隆抗体,检测其交叉反应.结果表明,β-乳球蛋白不仅与水牛乳中其它蛋白有交叉反应,与其他乳源的β-乳球蛋白也有交叉反应.β-乳球蛋白的交叉反应较强,也是导致乳类食物过敏的主要原因之一.  相似文献   

6.
牛乳中主要过敏原组分的分离纯化及鉴定   总被引:2,自引:0,他引:2  
目的:分离纯化并鉴定牛乳中引起过敏反应的主要致敏组分。方法:采用聚丙烯酰胺凝胶电泳(SDS- PAGE)分析了脱脂乳和乳清的蛋白组分,用饱和硫酸铵分段盐析-DEAE离子交换柱层析纯化过敏原蛋白,脱脂乳和乳清蛋白皮下注射Balb/c小鼠获得高效价特异性IgE抗血清用于免疫印迹分析。结果:免疫印迹分析显示β-乳球蛋白(β-Lg)是引起牛乳过敏的主要过敏原,建立了牛乳过敏小鼠模型。结论:明确了牛乳过敏的主要过敏组分,对牛乳过敏症的诊断治疗以及无过敏原牛乳的制备提供了实验依据。  相似文献   

7.
目的食物过敏已成为全球性的食品安全问题,欧美等发达国家均要求对食品中的过敏原成分进行标识,其中就包括作为八大过敏性食物之一的牛乳及其乳制品。β-乳球蛋白是牛乳中的主要过敏原,约占乳清蛋白的50%,牛乳总蛋白的10%,并且约有82%的牛乳过敏患者对β-乳球蛋白过敏,因此其可以作为检测食品中是否含牛乳蛋白的一个有效的标志物。建立灵敏、可靠的β-乳球蛋白检测方法,对牛乳过敏原标识及保障牛乳过敏人群的安全消费具有重要意义。本文主要综述了牛乳β-乳球蛋白的高效液相色谱法、超高效液相色谱法、液相色谱-质谱联用法、酶联免疫吸附法、免疫层析法、电化学免疫法、蛋白微阵列法、等离子体共振法等色谱学和免疫学检测方法的研究进展,并对未来发展方向作出展望,以期促进牛乳β-乳球蛋白等过敏原检测方法的研究与开发。  相似文献   

8.
为准确定量食品中的牛奶过敏原,采用超高效液相色谱-串联质谱法同时检测3?种主要牛奶过敏原β-乳球蛋白、αs1-酪蛋白和αs2-酪蛋白,避免单一致敏蛋白在加工中的降解和灵敏度不高导致的假阴性。标准蛋白酶解液经纳升液相色谱-串联轨道阱高分辨质谱分析后,筛选得到8?条特征肽段。利用三重四极杆质谱多反应监测模式,选择面粉作为空白基质进行方法学验证。结果表明,该方法在1.6~30?000?ng/mL范围内线性良好,R2>0.999;定量限分别为β-乳球蛋白50?μg/g、αs1-酪蛋白3.2?μg/g、αs2-酪蛋白40?μg/g;平均回收率为86.41%~98.60%,相对标准偏差不大于8.95%;基质效应在86.04%~97.48%之间。此方法可应用于含牛奶和不含牛奶的实际商品,旨在鉴别食品中过敏原标签与产品实际过敏原间的差异,降低牛奶过敏消费者的健康隐患。  相似文献   

9.
以牛乳中主要过敏原β-乳球蛋白为研究对象,制备和鉴定具有T细胞表位和口服免疫耐受性的水解物,旨在为牛乳过敏患者口服免疫治疗方法提供理论依据。采用生物信息学方法预测β-乳球蛋白的T细胞表位,通过质谱分析6种蛋白酶水解β-乳球蛋白水解物的氨基酸序列,用T细胞增殖实验鉴定水解物中多肽免疫耐受作用,体内实验测定小鼠血清特异性抗体(IgE、IgG1、IgG2a)、Th1细胞因子(IFN-γ、IL-17)、Th2细胞因子(IL-4、IL-5、IL-13)、组胺、几丁质酶-3样蛋白1的水平及小鼠脾脏细胞亚群的变化水平,验证β-乳球蛋白水解物的口服免疫治疗活性。研究结果表明:胰蛋白酶、复合蛋白酶和木瓜蛋白酶水解物具有口服耐受性,其中复合蛋白酶和木瓜蛋白酶水解物具有口服耐受性是创新性发现。中性蛋白酶水解物虽然含有T细胞表位,但是仍然具有致敏性。因此含有T细胞表位的水解物不一定具有口服免疫耐受性,需要体内实验验证。研究结论以期为新型抗过敏乳基料的开发和临床治疗牛乳过敏提供参考数据。  相似文献   

10.
卵转铁蛋白是鸡蛋中的主要过敏原,针对鸡蛋中主要过敏原卵转铁蛋白建立了双抗夹心ELISA方法,该方法检出限为(15.37±1.20)ng/m L。除白蛋白外,该方法对粘蛋白、溶菌酶、α-乳白蛋白、牛奶总蛋白、β-乳球蛋白、酪蛋白、花生总蛋白、大豆、杏仁和绿豆等致敏蛋白几乎没有交叉反应。板内重复性和板间重复性较好,因此所建立的方法可用于对卵转铁蛋白的检测。  相似文献   

11.
水牛乳中主要过敏原的分离纯化   总被引:3,自引:2,他引:1  
罗曾玲  陈红兵  陈福 《食品科学》2006,27(10):428-432
牛乳和水牛乳存在免疫交叉反应,牛乳过敏患者可能对水牛乳过敏。因此,分离纯化出水牛乳中各种过敏原将为进一步的工作奠定物质基础。实验中以摩拉水牛乳为原料,通过等电点沉淀、凝胶柱层析法和阴离子交换法分离纯化水牛乳的酪蛋白、β-乳球蛋白α-乳白蛋白,得到了SDS-PAGE纯(纯度≥90%)的β-乳球蛋白α-乳白蛋白。离子交换层析分离β-乳球蛋白、α-乳白蛋白的得率分别为50.26%、52.86%;凝胶层析分离β-乳球蛋白、α-乳白蛋白的得率分别为49.39%、84.19%。实验结果表明,等电点沉淀、凝胶柱层析法和阴离子交换法适合于分离水牛乳中主要过敏原成分。  相似文献   

12.
蔡小虎  李欣  陈红兵  高金燕 《食品科学》2010,31(23):429-433
牛乳中含有3 种主要的过敏原蛋白:酪蛋白、β- 乳球蛋白和α- 乳白蛋白。本文详细叙述沉淀法、离子交换层析法、凝胶过滤层析法、羟基磷灰石层析法、疏水相互作用层析法、高效液相色谱法以及膜技术等分离纯化技术在牛乳主要过敏原分离纯化中的研究进展。其中,离子交换层析与凝胶层析已被广泛使用,而沉淀法一般作为粗提纯过的步骤。羟基磷灰石层析与疏水相互作用层析法也较为常见,既可单独分离过敏原,又可与其他方法结合来分离过敏原。另外高效液相色谱法与膜技术则是进一步纯化的后续工作,以提高过敏原的纯度。  相似文献   

13.
The use of hydrolysed formulas for feeding babies is efficient for preventing allergic diseases. Several hypoallergenic formulas (HF) based on hydrolysed cows’ milk proteins have been commercialised. However, some children fed such formulas suffer allergic reactions. β-lactoglobulin (βLG) is the main allergen present in cows’ milk. In addition to the whole protein, βLG fragments have also shown allergenic character. Detection of βLG and its peptides can be a useful marker of the presence of milk in food. Enzyme linked immunoassays (ELISAs) are general methods used to analyse allergens in foods. These techniques are sensitive and selective but they have several drawbacks. Immunoassay methods performed in chromatographic systems keep the advantages of classic ELISA while avoiding the disadvantages. A sandwich enzyme linked immunoaffinity chromatography (ELIAC) method was applied to determine βLG and its peptides in several commercial HF based on different milk proteins. Samples were also fractionated by employing membranes with different molecular weight cut-offs, and the antigenicity of the peptide fractions was determined. Applying the ELIAC method, for which one analysis takes 30 min, βLG was determined at the pm level in formulas based only on caseins, and at the nm to μm level in formulas based on hydrolysed whey proteins. Peptides of molecular weight less than 3000 derived from βLG showed positive results in ELIAC assays, indicating antigenic character.  相似文献   

14.
Several EC Directives have been promulgated to protect allergic individuals but no rule has been established with regard to allergen cross-contamination caused by shared transport vehicles or common processing equipment. The aim of this research was to quantify, by enzyme-linked immunosorbent assay (ELISA) or real-time polymerase chain reaction, the presence in meat- or fish-based foods of four allergens (milk, egg, crustaceans and molluscs) that was not indicated either in the list of ingredients or in the label alert. In the time frame of 2007–2009, a total of 723 samples were subjected to 1983 analyses. The percentage of samples scoring positive ranged between 1.8% and 6.8% over the 3 years, and the concentrations of undeclared allergens found were 0.3–13.3?mg?kg?1 for milk (β-lactoglobulin) and 0.21–12?mg?kg?1 for egg white proteins. On this basis, the possibility of cross-contamination serious enough to raise public health concern cannot be dismissed.  相似文献   

15.
Bovine nonfat dry milk (NDM) and major whey components (lactose, α-lactalbumin, and β-lactoglobulin) were evaluated for their effects on IL-6 and IL-8 production in human intestinal-like Caco-2 cells unstimulated or stimulated with IL-1β. All the whey components investigated and NDM induced IL-6 production by Caco-2 cells; the most significant increase was observed with β-lactoglobulin. In the case of IL-1β-stimulated cells, neither NDM nor the major whey components investigated contributed to the induction of IL-6 production after they were stimulated. Induction of IL-8 production by both α-lactalbumin and β-lactoglobulin was higher than that by lactose and NDM; α-lactalbumin was a more potent inducer of IL-8 than β-lactoglobulin and IL-1β alone in both unstimulated and stimulated cells. In Caco-2 cells that were stimulated with IL1-β, NDM and all the major whey components investigated had a synergistic effect on induction of IL-8 production, indicating that IL-8 induction was amplified by prior stimulation of cells by IL-1β. This synergistic effect was not observed with IL-6. Our results suggest that immunomodulatory properties of milk components may be affected by other complex events in the gut.  相似文献   

16.
研制了一种可快速检测羊乳及制品中牛源β-乳球蛋白(β-lactoglobulin,β-lg)的胶体金免疫层析试纸条。通过杂交瘤技术制备牛β-lg特异性单克隆抗体(monoclonal antibody,mAb),利用柠檬酸钠还原氯金酸,形成30 nm胶体金颗粒,并用于标记牛β-lgmAb。采用竞争法研制免疫层析试纸条,将胶体金标记的牛β-lgmAb包被于金标垫,牛β-lg和羊抗鼠IgG标记于硝酸纤维素膜分别作为检测线(T线)和质控线(C线),牛β-lg和二抗的最佳包被浓度均为1.0 mg/mL。制得的单克隆抗体纯度都在90%以上,效价均在10000以上且特异性较好。该试纸条对牛β-lg的检测限(limit of detection,LOD)值为3.13μg/mL,对牛源α-CN,牛源β-CN,牛源κ-CN,牛源α-LA,BSA均未产生交叉反应,对脱脂羊乳粉中掺杂脱脂牛奶粉的LOD值为5%,并用该方法对市售羊奶及配方羊奶粉进行分析,检测结果与商品化的ELISA试剂盒一致。该方法前处理快速简单,可在5 min内对牛β-lg进行检测,可用于羊乳制品的现场快速检测。  相似文献   

17.
《Journal of dairy science》2022,105(12):9476-9487
Dairy processing can alter the digestion stability and bioavailability of cow milk proteins in the gastrointestinal tract. However, analysis of stable linear epitopes on cow milk allergens that could enter into intestinal mucosal is limited. Thus, this study aimed to investigate the digestion and transportation properties and residual allergen epitopes entering into gastrointestinal mucosa of 3 commercial dairy products, including pasteurized milk (PM), ultra-heat-treated milk (UHTM), and dried skim milk (DSM). In this work, the digestive stability of the 3 kinds of dairy products has been performed in a standard multistep static digestion model in vitro and characterized by Tricine-SDS-polyacrylamide gel electrophoresis and reversed-phase HPLC. With respect to gastrointestinal digestion in vitro, the main allergens including β-lactoglobulin (β-LG), α-lactalbumin (α-LA), and caseins were degraded gradually, and the resistance peptides remained in the PM with a molecular weight of range from 3.4 to 5.0 kDa. Simultaneously, the potential allergenicity of the cow milk proteins was diminished gradually and is basically consistent after 60 min of gastrointestinal digestion. After gastrointestinal digestion, the remaining peptides were transported via an Ussing chamber and identified by liquid chromatography-MS/MS. By alignment, 10 epitopes peptides were identified from 16 stable peptides, including 5 peptides (AA 92–100, 125–135, 125–138, and 149–162) in β-LG, 2 peptides in α-LA (AA 80–93 and 63–79), 2 peptides in αS1-casein (AA 84–90 and 125–132), and 1 peptide (AA 25–32) in αS2-casein were identified by dot-blotting mainly exist in UHTM and PM. This study demonstrates dairy processing can affect the digestion and transport characteristics of milk proteins and in turn alter epitope peptides release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号