首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了保证郑焦铁路黄河大桥桥梁基础安全,同时尽量避免桥梁基础因设计偏于安全而造成工程投资的增加,按单宽流量、河势以及桥墩防护的多种组合,开展了桥墩基础局部冲刷试验研究,分析了桥墩局部冲刷的水流现象、冲刷坑形态和冲刷深度。结果表明:局部冲刷最深点在承台下的桩群之间,略偏向桥轴线上游部位;墩后形成带状淤积体,淤积体随单宽流量的增大而增大。水流方向与桥轴线正交时,桥墩周围的局部冲刷坑形态基本沿桥墩轴线对称分布;水流方向与桥轴线法线存在夹角时,冲坑范围扩大、冲坑深度明显增深,桥墩两侧马蹄形旋涡不再对称分布。墩前抛石护底后,局部冲刷坑深度明显变浅。  相似文献   

2.
斜交桥的桥墩附近流态和冲刷情况极为复杂,很难准确确定桥墩附近的冲刷深度。通过对南盘江大桥桥墩附近的冲刷计算分析,从而探讨斜交桥冲刷计算的方法。计算结果表明:桥轴线与水流的斜交角度和桥墩阻水面积对冲刷影响明显,按斜交面积计算的冲刷深度比较合理,按投影面积计算的结果偏大。  相似文献   

3.
大桥复合桥墩局部冲刷深度的计算分析   总被引:2,自引:1,他引:1  
桥墩的冲刷毁坏是桥梁失事的重要原因。为保证桥梁安全,需要准确评价桥墩冲刷深度。本文结合某跨海大桥,使用较为可靠的HEC-18公式对其复合桥墩的局部冲刷深度进行研究。计算结果表明,该大桥最大的可能局部冲刷深度发生在主桥主墩,复合桥墩中群桩部分造成的冲刷深度为桥墩冲刷的主要部分,且随流速增大,其在总冲刷深度中所占比例也增大,总冲刷深度对承台吃水深度变化不敏感。进一步分析表明,复合桥墩的冲刷深度随水流斜交角的变化规律与简单桥墩有较明显区别,关系更为复杂。  相似文献   

4.
为了深入研究大尺度河流涉水桥梁桥墩局部地形演变特征和趋势,基于1992年和2012年武汉长江大桥桥墩区域地形资料,分析了桥墩局部河床年内及年际间的演变规律。结果表明,年内变化规律表现为冲刷坑位置转移,冲坑由汛期的桥墩正后方转向非汛期的桥墩两侧,冲坑面积增大,但深度减小,墩周其他局部位置淤积;年际变化表现为冲刷坑深度增加,且面积有所增大,但增幅有限,整体来看,桥墩周围地形年际间冲淤变化幅度不大,基本维持平衡。  相似文献   

5.
由于传统桥墩冲刷防护措施的局限性,引入新型防冲装置-环翼式防冲板,对圆端形桥墩冲刷进行防护,通过减小下降水流改变桥墩周围水流结构,主动降低了下降水流对桥墩的冲刷。为探究环翼式防冲板对圆端形桥墩局部冲刷的防护作用,采用3种比例圆端形桥墩、3种环翼式防冲板安装位置进行物理模型试验,对圆端形桥墩周围的冲坑特征、垂向流速、垂向紊动强度、紊动切应力等水力要素进行研究。结果表明:安装环翼式防冲板后,3种圆端形桥墩冲刷程度均减小,中圆端形桥墩冲刷减小幅度最大,冲坑体积减小率为30.0%;中圆端形桥墩安装环翼式防冲板后,墩前垂向流速减小为0.039m/s、垂向紊动强度减小为0.025m/s;防冲板上垂面紊动切应力增大,板下垂面紊动切应力减小。试验结果表明环翼式防冲板能够减小桥墩的局部冲刷,具有很高的实用价值。  相似文献   

6.
基于超声波地形仪,提出了桥墩冲刷坑超声动态测量方法,实现了桥墩冲刷坑水下实时非接触测量。结果表明,桥墩冲刷首先发生在墩侧及墩前,之后墩后逐渐开始冲刷,墩后沙丘缓慢发展;最大冲刷深度开始位于墩前,逐渐移至墩侧;桥墩前缘和两侧冲刷坑较深,桥墩后方冲刷坑较浅;各断面输沙率与上游断面泥沙输运及断面间泥沙冲淤有关。  相似文献   

7.
塔基(桥墩)的局部冲刷问题是跨河工程规划、设计中需考虑的重要课题。受限于地形、地质、经济条件等因素,斜交塔基(桥墩)逐渐用于跨河工程中。然而,目前研究侧重正交塔基(桥墩)的局部冲刷问题,对斜交塔基局部冲刷规律研究较少,因此,以某斜交塔基工程为例,通过概化模型试验研究了斜交塔基的局部冲刷规律。研究结果表明:与正交塔基相比,斜交塔基偏向侧流速增幅大于塔基背向侧流速;冲刷坑最大冲刷深度较大,且最大冲刷位置位于塔基偏向侧;冲刷坑呈不对称的马蹄形,且塔基偏向侧冲刷范围大于背向侧;塔基防护后,以上趋势减弱。研究成果为解决跨江大桥或电缆通道建设中的斜交塔基局部冲刷问题提供了参考借鉴。  相似文献   

8.
结合黄河下游游荡性河道的特点,对中线南水北调工程弧柏嘴穿黄渡槽槽墩局部冲刷进行了研究。试验研究了不同单宽流量,不同水流(主流)与槽墩的交角条件下槽墩的最大局部冲刷深度,并将试验结果同黄河实测资料及理论公式计算值进行了对比分析。  相似文献   

9.
基于桥墩局部冲刷原理,在水平护圈防冲措施的基础上,设计了一种能改变桥墩周围水流流态的新型防冲设施—钩环式护圈。为探究钩环式护圈对圆柱形桥墩局部冲刷的防护效果,采用不同形状的钩环式护圈进行室内物理模型试验,分析了桥墩周围的冲刷特征和水力特性。试验结果表明:当钩环式护圈的高度为1 cm、角度为135°且安装在床面时,防护效果最好;与光墩相比,桥墩安装钩环式护圈后,最大冲刷深度最多可减小62.2%,桥墩底部垂向流速、垂向紊动强度均明显减小。通过多元回归分析建立了计算桥墩周围无量纲最大冲刷深度的经验方程,该方程对明流和冰盖条件下水流均适用。  相似文献   

10.
圆柱桥墩局部冲刷机理试验研究   总被引:4,自引:0,他引:4       下载免费PDF全文
为进一步探索圆柱桥墩局部冲刷机理,分别从桥墩附近水流流速分布特性、桥墩冲刷特性以及冲刷与流速相互关系对圆柱桥墩顺水流向不同布置方式的局部冲刷水力学特征进行了模型试验研究.结果表明:两排10桥墩顺水流(桥墩轴向与水流方向夹角分别为90°,60°,30°,0°)均匀布置时,桥墩轴向与流向夹角越小,流速在桥墩上下游紊动越小,对下游影响范围越大,且流速越大,冲刷深度和范围越大.顺水流布置0°夹角时,冲刷程度最小,在相同流量下,冲刷稳定历时最短;垂直布置(90°夹角)时,冲刷程度最严重,所需冲刷稳定历时最长,且随着流量的增大,桥墩墩前冲刷坑最深位置逐渐向水槽中间偏移.  相似文献   

11.
桥墩局部冲刷防护的石块起动   总被引:4,自引:0,他引:4  
桥墩局部冲刷一直是影响桥梁安全的最大自然灾害,抛石防护是最普遍的冲刷防护形式之一。在总结已有冲刷机理的基础上,分析了包括墩前河床底部流速和墩侧河床底部流速的桥墩局部流速,并给出了桥墩冲刷防护石块起动的简化公式。结果表明,墩侧河床底部流速大于墩前河床底部流速,墩侧防护石块更易走失。当行近流速小于3m/s时,可采用抛石进行桥墩局部冲刷防护,抛石直径约为0.2m;对于行近流速为3~5m/s时,建议采用其它冲刷防护措施。  相似文献   

12.
为预测圆柱形桥墩周围的局部冲刷坑形态和最大冲坑深度,基于Flow-3D软件的水动力学模块和泥沙输运模块对桥墩附近局部冲刷进行了三维数值模拟。以Melville冲刷试验为原型,采用LES大涡模拟方法,模拟了桥墩附近湍流流场。以床面瞬时切应力作为泥沙起动、输移条件,采用Van Rijn输沙率公式计算床面冲淤。采用FAVOR技术追踪河床形态变化,得到了桥墩附近局部冲刷形态。经实测资料验证,计算结果与模型实测的冲坑形态及最大冲坑深度基本吻合。  相似文献   

13.
桥墩的局部冲刷导致河床形态变化和桥墩基础埋深减小是桥梁水毁的主要原因。在大涡模拟(Large Eddy Simulation,LES)的基础上结合水流运动方程和泥沙运动的动理学理论系统地对桥墩基础处的水流冲刷问题进行全时段全方位的三维数值模拟。得到了桥墩基础处的湍流流场流线图及河床形态变化的高程图。重点研究了水流流速和河床颗粒中值粒径对桥墩周边局部冲刷的影响。结果表明:冲刷坑的深度随着初始流速的增大而增加,且冲刷坑形成速度加快;冲刷坑的深度随着河床颗粒中值粒径的减小而增大,但是当颗粒的中值粒径小到一定程度时,由于泥沙颗粒之间的黏聚力增大导致冲刷坑的深度反而减小。  相似文献   

14.
<堤防工程设计规范>(GB50286-98)推荐的堤防工程斜冲水流冲刷深度计算公式是源于沙石河道冲刷实测数据得出的经验公式,通过水槽试验证明,其对卵砾石河道冲刷深度的计算值小于实测值.基于卵砾石河道堤防工程边坡系数为1.5的斜冲水流的冲刷情况,提出了用于卵砾石河道冲刷深度的计算公式,该公式计算值与试验实测值符合良好.  相似文献   

15.
长江水道内的大型桥墩周围易形成明显的局部冲刷而影响桥梁的稳定。通过正态冲刷模型,采用系列模型延伸法,研究南京三桥主桥桩套箱结构墩基的最大冲深、冲深区域及其形态。在特征水文年情况下主桥墩基的最大冲深均大于15m,最大冲深发生在迎水套箱底下的前部桩间。冲刷角为100时,南主墩处局部最大冲刷增大约13.7%。有交角情况下,最大冲深位置移至略大于迎水角的墩前下方,冲刷形态由正交时的较对称变成偏向一边的不规则形,但冲刷范围与正交时的冲深范围接近。试验预报冲深在原型实测地形中得到了较好的印证。  相似文献   

16.
桥墩基础施工河床局部冲刷研究   总被引:2,自引:2,他引:2  
天然河流中水流受到建筑物的阻碍时,产生紊动涡旋,局部河床泥沙在水流紊动剪应力作用下起动,并被涡旋流带向下游,建筑物局部河床因此受到侵蚀而下降,形成局部冲刷坑。跨河大桥桥墩的局部冲刷就是如此。桥墩及其基础与水深或河床的相对位置影响着局部冲刷深度的发展。本文通过室内试验研究了桥墩下部钢围堰基础施工的相对高程对河床局部冲刷最大深度的影响,探讨了工后钢围堰顶部处于相对水深的不同高度时局部冲刷发展的规律,并将这些影响因素用墩形系数法计入局部冲刷深度计算中,给出了计算公式。本文的研究对目前跨江及跨海大尺度桥墩基础工程施工具有指导意义。  相似文献   

17.
基于Melville桥墩局部冲刷试验模型,采用FLOW-3D软件,利用大涡模拟方法模拟了桥墩绕流局部冲刷过程,通过分析冲刷坑形态、深度的变化过程,评价了Meyer-Peter和Van Rijn推移质输沙率公式在桥墩绕流局部冲刷模拟中的适用性,并结合两输沙率公式结构分析了模拟结果存在差异的原因。结果表明:大涡模拟方法能够有效模拟桥墩绕流的复杂流态,采用Meyer-Peter推移质输沙率公式的局部冲刷模拟结果较好,预测的冲刷坑形态更接近试验观测结果;当时间为30 min时,最大冲刷深度与试验观测结果相对误差为2.3%。采用Van Rijn推移质输沙率公式的预测结果相对较差,最大冲刷深度与试验观测结果相对误差为15.5%。  相似文献   

18.
精确模拟山区河流非均匀沙质河床桥墩的局部冲刷对桥梁设计和安全运行具有重要的意义。以黑石渡大桥河床床沙特征为背景,采用Flow3D软件开展非均匀沙质河床上双排圆柱形桥墩冲刷三维数值模拟研究。为考虑河床非均匀泥沙的悬移质运动、泥沙挟带、推移质输运等过程,在数值模拟过程中,根据非均匀沙质河床的颗粒分布曲线,对所筛取的各个级配范围内的颗粒采用其对应的中值粒径来表征。模拟得到了双柱排桥墩局部流场结构、河床的冲淤变化和上下游桥墩周围冲刷坑形态。研究表明:受桥墩阻水作用影响,墩前壅水、墩后跌水现象明显。墩周冲刷坑基本贯通整个墩周区域,受上游墩保护作用影响,下游墩冲刷坑的发育深度和规模小于上游墩。将数值模拟结果与试验结果进行了对比分析,二者吻合较好。研究成果可为深入开展非均匀沙质河床桥墩局部冲刷研究提供参考。  相似文献   

19.
潮流作用下桥墩局部冲刷研究   总被引:1,自引:0,他引:1  
为明确潮流与恒定流条件下桥墩局部冲刷深度的关系,通过长时间序列潮流作用下桥墩的局部冲刷试验,观测不同特征参数的潮流条件下桥墩局部冲刷最深点的发展趋势,分析往复流造成的冲刷坑内泥沙反复冲淤对冲刷坑发展过程的影响,涨落潮最大流速和历时决定了冲坑的发展的速率和达到最大冲深的可能性,在潮流速度值较大或历时占优的情况下,将取得与恒定流一致的局部最大冲深。  相似文献   

20.
针对并线桥墩在多沙河流上的局部冲刷问题,采用1:100正态模型水槽对桥梁平面正交在不同形状、上下游不同桥梁间距的桥墩布置进行了系列试验研究,对上下游桥墩在不同水流强度、不同桥梁间距条件下的局部冲刷过程进行系统观测和分析.结果表明,桥墩并线时,桥墩周围水流流态较为复杂,受上游墩阻水绕流影响,下游墩周围水流紊动强度减小,流...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号