首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于TSMC 0.13 μm CMOS工艺,设计了一款适用于无线保真(WiFi)收发机的发射端、工作在2.4 GHz且增益可控的三级级联功率放大器.驱动级采用单管结构,后两级采用共源共栅(MOSFET)结构.利用调节共源共栅晶体管栅极的电容来改变栅极电压的相位,进而弥补了共源共栅结构的劣势,增加了整个系统的线性度和增益.另外,使用外部数字信号控制每级偏置的大小来适应不同的输出需求.整个结构采用电源电压:第一级为1.8V,后两级为3.3V,芯片面积为1.93 mm×1.4 mm.利用Candence Spectre RF软件工具对所设计的功率放大器进行仿真.结果表明,在2.4 GHz的工作频点,功率放大器的饱和输出功率为24.9 dBm,最大功率附加效率为22%,小信号增益达到28 dB.  相似文献   

2.
基于IBM SOI-0.18μm CMOS工艺,实现了高PAE的Class-E功率放大器.此放大器由两级构成.在输出级采用了负电容技术,抵消寄生电容,提高效率.输出级的共栅管采用自偏置,防止晶体管被击穿.驱动级采用Class-E结构,使得输出级能更好地实现开与关.两级之间使用了改善输出级电压和电流交叠的网络.通过使用这些技术,在2.8V电源电压下,功率放大器工作在2.4GHz的时候,输出功率为23.44dBm,PAE为58.99%.  相似文献   

3.
基于0.13 μm CMOS工艺,采用多频点叠加的方式,设计了一种K波段宽带功率放大器。输入级采用晶体管源极感性退化方式,实现了宽带输入匹配。驱动级采用自偏置共源共栅放大器,为电路提供了较高的增益。输出级采用共源极放大器,保证电路具有较高的输出功率。后仿真结果表明,在26 GHz处,该功率放大器的增益为22 dB,-3 dB带宽覆盖范围为22.5~30.5 GHz,输出功率1 dB压缩点为8.51 dBm,饱和输出功率为11.6 dBm,峰值附加功率效率为18.7%。  相似文献   

4.
介绍采用TSMC公司的0.18μm CMOS工艺应用于5 GHzWLAN(无线局域网)发射集中的功率放大器的设计方法,并给出了仿真结果。电路采用A类三级放大结构,在3.3 V工作电压下,增益为23.7 dB,1 dB压缩点输出功率21.8 dBm,最大功率附加效率15%,可望用于WLAN 802.11a标准的系统中。  相似文献   

5.
为了满足短距离无线高速传输的应用需求,基于SMIC 90 nm 1P9M CMOS工艺,设计了一种可工作在60 GHz的功率放大器(PA)。该PA为单端三级级联结构。采用顶层金属方法,设计具有高品质因子的小感值螺旋电感,用于输入、输出和级间匹配电路,以提高电路的整体性能。通过减少传输损耗和输出匹配损耗,提高了附加功率效率。仿真结果表明,在1.2 V电源电压下,该PA的功率增益为17.2 dB,1 dB压缩点的输出功率为8.1 dBm,饱和输出功率为12.1 dBm,峰值功率附加效率为15.7%,直流功耗为70 mW。各性能指标均满足60 GHz通信系统的要求。  相似文献   

6.
文中介绍了一个基于TSMC 0.18μm CMOS工艺,可应用于802.11a无线局域网标准的功率放大器设计。该电路采用三级全差分结构,驱动级采用电阻并联负反馈网络来保证稳定性。在3.3V电源电压下,增益为16dB,输出1dB压缩点为17dBm,电路功耗为0.8 W,效率为18.1%。芯片面积为1.2mm×1.1 mm。  相似文献   

7.
肖谧  张海兵 《微电子学》2015,45(6):718-721
针对射频前端发射距离的不确定性,设计了一款基于0.18 μm CMOS工艺的增益可变功率放大器。该功率放大器的中心工作频率为915 MHz,工作在AB类,采用两级单端共源共栅结构。输入级采用类似开关功能的栅压,控制3个并联的共源共栅结构输出管的导通,得到增益和输出功率可变的功率放大器。仿真结果表明,在输入级1.8 V和输出级3.3 V的电源电压下,该功率放大器功率增益范围为9~25.8 dB,1 dB压缩点处的最大输出功率为21.47 dBm,最大功率附加效率为29.6%。该放大器的版图面积为(1.4×1.2) mm2。  相似文献   

8.
王晓蕾  叶坤  王月恒  倪伟 《微电子学》2019,49(5):623-627
为了减小功率放大器的功率损耗、提高功率附加效率,基于TSMC 55 nm CMOS工艺,设计了一种工作频率为5 GHz的高效率E类射频功率放大器。采用包含驱动级的两级电路结构,提高了电路的功率增益。对负载回路进行优化设计,改善了漏极电压与电流波形交叠的问题,进而提升了效率,同时降低了漏极电压的峰值,缓解了晶体管的击穿压力。仿真结果表明,电源电压为2.5 V时,该放大器的输出功率为21.2 dBm,功率附加效率为53.1%。  相似文献   

9.
秦国宾  王宁章 《通信技术》2010,43(9):170-172
利用双重器件提高线性度的方法,设计了一个两级电路结构的线性功率放大器,可应用于蓝牙系统发射模块。电路基于台基电公司(TSMC)0.18μm互补金属氧化物半导体(CMOS)工艺进行设计,该功率放大器的中心工作频率为2.4GHz,利用ADS2008U2对电路进行模拟仿真。仿真结果显示,当输入信号功率为-7.8dBm时,功率增益为30.6dB,功率附加效率为26.67%,1dB压缩点输出功率为22.79dBm,具有很高的线性度。  相似文献   

10.
24 GHz频段在车载雷达和无人机方面应用广泛,但面临着提高集成度、降低成本的挑战,而CMOS毫米波芯片因其成本低和易于系统集成的优点,在毫米波通信系统的应用中占据着越来越重要的地位。因此提出一种基于CMOS工艺的24 GHz功率放大器芯片的设计方法,包括24 GHz功放芯片的应用,以及有源器件的版图对其特征的影响及设计,给出了CMOS毫米波无源器件的特征及建模设计,最后对无源与有源器件进行了联合仿真,得到一个PAE为17%、Pout为10.7 d Bm的单级24 GHz功率放大器芯片。  相似文献   

11.
宗国翼  朱恩  李智群 《电子器件》2005,28(1):161-163
介绍了TSMC0.18μm CMOS工艺的功率放大器的设计,给出了仿真结果,版图照片和芯片键合测试方案。该电路采用三级差分放大结构,在其工作频段内满足绝对稳定条件,在3.3V电源电压下,增益为27.3dB,输入1dB压缩点为-7dBm,最大输出功率为19.3dBm,输入端反射系数S11=-30dB,可用于无线局域网802.11a标准的系统中。  相似文献   

12.
陈婷  何进  陈鹏伟  王豪  常胜  黄启俊 《微电子学》2017,47(4):465-468
基于0.13 μm CMOS工艺,设计了一种工作于K波段的低噪声放大器。输入匹配采用一种改良π型匹配网络,输出匹配采用L+π型匹配网络,避免了电容击穿的风险和源端大电感的引入。电路使用级间L型匹配的方式,利用第一级电路的输出寄生电容和第二级电路的输入寄生电容,有效地提高了电路的增益,降低了噪声。仿真结果表明,该低噪声放大电路为单电源1.5 V供电,在27 GHz频率处的增益为27 dB,噪声系数为3.75 dB,输入回波损耗和输出回波损耗分别为-11.1 dB和-20.5 dB。  相似文献   

13.
黄继伟  朱嘉昕 《微电子学》2021,51(3):314-318
提出了一种采用0.13 μm SiGe工艺制作的77 GHz功率放大器。该放大器采用两路合成结构提高输出功率,采用两级差分放大结构提高增益。功率级选择Cascode结构,提升功率级输出阻抗,便于匹配。驱动级选择共射极加中和电容的结构,便于提升增益。在输入端,通过两路耦合线巴伦结构进行功率分配,得到两对差分信号,经过两路放大之后再通过两路耦合线巴伦结构进行功率合成,最后输出信号,级间匹配采用变压器匹配。该功率放大器采用ADS软件仿真。结果表明,在77 GHz的工作频点处,小信号增益为19.6 dB,峰值功率附加效率为11%,饱和输出功率为18.5 dBm。  相似文献   

14.
夏辉 《电子测试》2011,(1):83-86
在光纤传输系统中,分频器是工作在最高频率的电路之一,起着至关重要的作用,本文就采用了由锁存器构成的数字1:2分频器.采用UMC 0.13μm CMOS工艺,设计了电源电压为1V,工作频率范围为5~20GHz的1:2分频器电路.该电路由基本分频器单元以及输入输出缓冲组成.基本分频器单元采用单端动态负载锁存器.整体电路功耗...  相似文献   

15.
曹志远  何进  李海华  王豪  常胜  黄启俊 《微电子学》2019,49(4):487-490, 496
基于130 nm CMOS工艺,设计了一种24 GHz工作频率的单刀双掷(SPDT)开关。该开关基于π型阻抗匹配网络,将浮体技术和堆叠晶体管结构应用于开关的并联臂、串联臂,实现了低插入损耗、高隔离度和高线性度。仿真结果表明,该SPDT开关的插入损耗S21的-1.5 dB带宽为20~26 GHz。在20~26 GHz频率范围内,输入回波损耗S11小于-18 dB,输出回波损耗S22小于-17 dB,隔离度S12大于32.2 dB。在频率24.5 GHz处, S21可达-1.45 dB, 输入1 dB压缩点为17.36 dBm。  相似文献   

16.
A differential complementary LC voltage controlled oscillator(VCO) with high Q on-chip inductor is presented.The parallel resonator of the VCO consists of inversion-mode MOS(I-MOS) capacitors and an on-chip inductor.The resonator Q factor is mainly limited by the on-chip inductor.It is optimized by designing a single turn inductor that has a simulated Q factor of about 35 at 6 GHz.The proposed VCO is implemented in the SMIC 0.13μm 1P8M MMRF CMOS process,and the chip area is 1.0×0.8 mm~2.The free-running frequency is from 5.73 to 6.35 GHz.When oscillating at 6.35 GHz,the current consumption is 2.55 mA from a supply voltage of 1.0 V and the measured phase noise at 1 MHz offset is -120.14 dBc/Hz.The figure of merit of the proposed VCO is -192.13 dBc/Hz.  相似文献   

17.
利用电容补偿技术技术可以有效提高功率放大器的线性度.这垦描述了一种采用电容补偿技术改善线性的5.25GHz WLAN的功率放大器的设计方法,使用CMOS工艺设计了两级全差分放大电路,在此基础上设计输入输出匹配网络,然后使用ADS软件进行整体仿真,结果表明在1.8 V电源电压下,电路改进后与改进前相比较,用来表示功率放大...  相似文献   

18.
利用共源共栅电感可以提高共源共栅结构功率放大器的效率。这里描述了一种采用共源共栅电感提高效率的5.25GHz WLAN的功率放大器的设计方法,使用CMOS工艺设计了两级全差分放大电路,在此基础上设计输入输出匹配网络,然后使用ADS软件进行整体仿真,结果表明在1.8V电源电压下,电路改进后于改进前相比较,用来表示功率放大器效率的功率附加效率(PAE)提高了两个百分比。最后给出了功放版图。  相似文献   

19.
基于TSMC 0.18μm RFCMOS工艺,设计了一种工作于2.4 GHz频段的低噪声放大器。电路采用Cascode结构,为整个电路提供较高的增益,然后进行了阻抗匹配和噪声系数的性能分析,最后利用ADS2009对其进行了模拟优化。最后仿真结果显示。该放大器的正向功率增益为14 d B,噪声系数小于2 d B,1 d B压缩点为-13 d Bm,功耗为7.8 m W,具有良好的综合性能指标。  相似文献   

20.
This paper presents an LC voltage controlled oscillator(VCO) in a dual-band frequency synthesizer for IMT-advanced and UWB applications.The switched current source,cross-coupled pair and noise filtering technique are adopted in this VCO design to improve the performance of the phase noise,power consumption,voltage amplitude,and tuning range.In order to achieve a wide tuning range,a reconfigurable LC tank with 4 bits switch control is adopted in the core circuit design.The size of the entire chip with pad is 1.11 0.98 mm2.The test results show that the current dissipation of the VCO at UWB and IMT-Advanced band is 3 mA and 4.5 mA in a 1.2 V supply.The tuning range of the designed VCO is 3.86-5.28 GHz and 3.14-3.88 GHz.The phase-noise at 1 MHz frequency offset from a 3.5 GHz and 4.2 GHz carrier is-123 dBc/Hz and-119 dBc/Hz,respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号