首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
基于SMIC 0.18μm RF CMOS工艺,采用双负反馈结构设计了一款2.4 GHz的功率放大器。该功率放大器由驱动级和功率输出级2级组成,利用片上电感实现了级间的阻抗变换。仿真结果表明,电路在工作频率范围内,功率增益为24 d B,输出1 d B压缩点为23 d Bm,峰值功率附加效率为40%。  相似文献   

2.
报告了一个两级 C-波段功率单片电路的设计、制作和性能 ,该单片电路包括完全的输入端和级间匹配 ,输出端的匹配在芯片外实现 ,该放大器在 5.2~ 5.8GHz带内连续波工作 ,输出功率大于 36.6d Bm,功率增益大于 18.6d B,功率附加效率 34 % ,4芯片合成的功率放大器在 4 .7~ 5.3GHz带内 ,输出功率大于 4 2 .8d Bm( 19.0 W) ,功率增益大于 18.8d B,典型的功率附加效率为 34 %。  相似文献   

3.
介绍了一款2~18 GHz的宽带放大器MMIC,该MMIC利用0.15μm GaN HEMT工艺设计加工,采用两级分布式结构设计,实现了较高的整体电路增益。利用Agilent ADS仿真设计软件对整体电路的原理图和版图进行仿真优化设计。在2~18 GHz工作频率范围内,电路小信号增益>20 d B,增益平坦度<±1.5 d B,输入输出回波损耗<-10 d B,输出功率>30 d Bm,功率附加效率(PAE)>7%,电路工作电压为25 V,最大功耗为7 W,芯片面积为4.5 mm×2.5 mm。  相似文献   

4.
介绍了移动通信用 Ga As HBT功率放大器的设计、制作 ,给出了电路拓扑。该两级放大电路在 180 0 MHz、3.6 V偏压下 ,相关增益 >30 d B,1分贝压缩点输出功率达到 2 8.8d Bm,饱和输出功率 >30 d Bm,最大效率 >37%。采用 Φ 76 mm工艺制作 ,工艺成品率高  相似文献   

5.
报道了一款采用0.25μm GaN功率MMIC工艺研制的0.1~2.0 GHz超宽带功率放大器芯片。芯片采用非均匀分布式拓扑结构进行设计。在管芯栅极端设计稳定结构来提高电路的整体稳定性,在漏极端采用阻抗渐变的方式进行电路匹配,从而提高电路的效率。芯片漏压30 V、连续波条件下,在0.1~2.0 GHz频率范围内,线性增益大于18 d B,功率增益大于13 d B;在0.1~1.5 GHz频率范围内饱和输出功率大于10 W,功率附加效率大于55%,最高效率达到78%。芯片面积2.4 mm×1.9 mm。  相似文献   

6.
基于InGaP/GaAs HBT工艺,设计实现了一款L波段高功率高效率功率放大器芯片。该功率放大器利用预匹配电容与基极稳流电阻对功率放大器的基本功率单元进行设计,并对晶体管功率合成器电路进行了改进。仿真结果表明,在工作频段1 650 MHz处,小信号增益达到43.5 dB,输入输出回波小于-13 dB,饱和输出功率大于36 dBm,饱和功率附加效率大于53.8%,芯片面积仅为0.9 mm×0.7 mm。采用此改进设计后,该款芯片在较小面积内实现了较高的功率放大器效率指标。  相似文献   

7.
基于0.25μm Ga N HEMT工艺,研制了一款两级拓扑放大结构的2~8 GHz宽带功率放大器MMIC(单片微波集成电路)。MMIC所用Ga N HEMT器件结构经过优化,提高了放大器的可靠性和性能;电路采用多极点电抗匹配网络,扩展了放大器的带宽,减小了电路的损耗。测试结果表明,在2~8 GHz测试频带内,在脉冲偏压28 V(脉宽1 ms,占空比30%)时,峰值输出功率大于30 W,功率附加效率大于25%,小信号增益大于24 d B,输入电压驻波比在2.8以下,在6 GHz处的峰值输出功率达到50 W,功率附加效率达到40%;在稳态偏压28 V时,连续波饱和输出功率大于20 W,功率附加效率大于20%。尺寸为4.0 mm×5.0 mm。  相似文献   

8.
研制成 Ga As/ In Ga As异质结功率 FET(HFET) ,该器件是在常规的高 -低 -高分布 Ga As MESFET的基础上 ,在有源层的尾部引入 i-In Ga As层。采用 HFET研制的两级 C波功率放大器 ,在 5 .0~ 5 .5 GHz带内 ,当Vds=5 .5 V时 ,输出功率大于 3 2 .3 1 d Bm(0 .1 77W/ mm ) ,功率增益大于 1 9.3 d B,功率附加效率 (PAE)大于3 8.7% ,PAE最大达到 49.4% ,该放大器在 Vds=9.0 V时 ,输出功率大于 3 6.65 d Bm(0 .48W/ mm) ,功率增益大于 2 1 .6d B,PAE典型值 3 5 %  相似文献   

9.
徐雷钧  孟少伟  白雪 《微电子学》2022,52(6):942-947
针对硅基毫米波功率放大器存在的饱和输出功率较低、增益不足和效率不高的问题,基于TSMC 40nm CMOS工艺,设计了一款工作在28GHz的高效率和高增益连续F类功率放大器。提出的功率放大器由驱动级和功率级组成。针对功率级设计了一款基于变压器的谐波控制网络来实现功率合成和谐波控制,有效地提高了功率放大器的饱和输出功率和功率附加效率。采用PMOS管电容抵消功率级的栅源电容,进一步提高线性度和增益。电路后仿真结果表明,设计的功率放大器在饱和输出功率为20.5dBm处的峰值功率附加效率54%,1dB压缩点为19dBm,功率增益为27dB,在24GHz~32GHz频率处的功率附加效率大于40%。  相似文献   

10.
报道了一款采用0.25μm GaAs功率MMIC工艺研制的Ku波段功率放大器芯片。芯片采用三级放大拓扑结构,末级输出匹配电路按照高效率设计,同时优化前后级推动比控制前级电流。级间采用有耗匹配电路设计,提高大信号状态下的稳定性。在16~18GHz频带范围内漏压8.5V、脉宽1μs、占空比40%的工作条件下线性增益大于25dB;饱和输出功率大于12 W,饱和效率大于32%,功率增益大于21dB,功率增益平坦度小于±0.5dB。芯片尺寸为3.5mm×4.6mm。  相似文献   

11.
基于GaN功率放大器模块化、小型化的发展需求,设计了一款X波段小型管壳封装的功率放大器。通过合理排布电路结构,实现了封装尺寸的小型化。由于器件功率密度不断提升,散热问题不容忽视,通过对不同材料的管壳底座进行热仿真分析,模拟芯片的温度分布,根据仿真结果选定底座材料为钼铜Mo70Cu30,利用红外热成像仪测试芯片结温为107.83℃,满足I级降额要求。最终设计的功率放大器尺寸为18.03 mm×8.70 mm×3.03 mm,在28 V工作电压脉冲测试条件下,9.3~9.5 GHz频带内饱和输出功率大于46 d Bm,功率附加效率大于36%,功率增益大于24.5 d B,电性能测试结果全部满足技术指标要求。  相似文献   

12.
两级GaAs单片功率放大器   总被引:1,自引:1,他引:0  
本文报道了两级GaAs单片功率放大器的设计和制作,着重介绍了利用MESFET的小信号模型和直流负载特性设计MESFET在大信号状态下的最佳功率匹配的方法,该方法大大简化了放大器匹配电路的设计.制作在1.9×0.9mm GaAs外延片上的两级放大器,1dB带宽800MHz(670~1470MHz)频带内,最大小信号增益24dB,最大输出功率300mW.功率附加效率17.8%.  相似文献   

13.
微波单片集成电路(Microwave Monolithic Integrated Circuit,MMIC)以其体积小型紧凑、一致性好、可靠性高、成品率高、适用于批量生产等特点,在微波通信系统中得到广泛的应用。基于Ga As赝配高电子迁移率晶体管,采用功率合成技术和阻抗匹配技术设计了一款Ka波段功率放大器,对电路进行了仿真分析,并进行流片。实测结果表明电路工作频率从36~38 GHz频段范围,P1d B输出功率大于35 d Bm,增益大于18 d B,功率附加效率为16%。  相似文献   

14.
报告了研制的 9.6mm栅宽双δ-掺杂功率 PHEMT,在 fo=1 1 .2 GHz、Vds=8.5 V时该器件输出功率3 7.2 8d Bm,功率增益 9.5 d B,功率附加效率 44.7% ,在 Vds=5~ 9V的范围内 ,该器件的功率附加效率均大于42 % ,两芯片合成 ,在 1 0 .5~ 1 1 .3 GHz范围内 ,输出功率大于 3 9.92 d Bm,最大功率达到 40 .3 7d Bm,功率增益大于 9.9d B,典型的功率附加效率 40 %。  相似文献   

15.
毛小庆  何勇畅  陈志巍  喻青  高海军 《微电子学》2020,50(4):499-502, 508
基于0.15 μm GaAs(D-Mode)pHEMT工艺,采用多级级联的方式,设计了一种中心频率为2.4 GHz的高效率功率放大器。采用两级级联放大结构,驱动级采用共源结构,提高了输出功率和线性度。功率级采用自偏置技术共源共栅结构,增益和效率得到提升。工作模式分别为A类和AB类。版图面积为1.45 mm2。仿真结果表明,在驱动级电路工作于5 V、功率级电路工作于10 V、频率为2.4 GHz的条件下,1 dB压缩点功率为31.99 dBm,最大输出功率为32.01 dBm,小信号增益为30.51 dB,功率附加效率为40.74%。输入功率为1.48 dBm时,在1.94~2.82 GHz频带内,输出功率为30.29~32.07 dBm,功率附加效率为30%~41.9%,小信号增益峰值为31.97 dB,3 dB带宽为880 MHz。  相似文献   

16.
本文研制了一款采用 0. 15 μm 碳化硅基氮化镓功率 MMIC 工艺的 Ka 波段连续波功率放大器芯片。功率放大器采用了 3 级共源级联结构。 输出级采用了 16 个晶体管进行功率合成,有效地分散了热分布,输出匹配网络采用低损耗拓扑架构,保证了输出功率与附加效率。 级间匹配采用了最大增益匹配,同时兼顾了小信号增益平坦度。 在28 GHz~30 GHz内,小信号增益为 25 dB,28 V 偏置电压下连续波输出功率大于 39 dBm,功率增益为 17 dB,附加效率大于 25%,热阻为1. 41 ℃ /W。 输出功率为 35 dBm 时,IMD3 小于-25 dBc,芯片面积为 3. 0 mm×3. 1 mm。  相似文献   

17.
基于SiC衬底0.25μm GaN HEMT工艺,设计实现了一款C波段、高效率和高线性的单片微波集成电路(MMIC)功率放大器。通过优化电路匹配结构,选择合适的有源器件和恰当的直流偏置条件,实现低视频漏极阻抗;利用后级增益压缩和前级增益扩张对消等手段,实现高功率附加效率和好的线性指标。功率放大器芯片尺寸为2.35 mm×1.40 mm。芯片测试结果表明,在3.7~4.2 GHz频率范围内,漏极电压28 V、末级栅极电压-2.2 V、前级栅极电压-1.8 V和连续波条件下,该功率放大器的小信号增益大于25 dB,大信号增益大于20 dB,饱和输出功率大于39 dBm,在输出功率回退至32 dBm时,功率附加效率大于30%,三阶交调失真小于-37 dBc。  相似文献   

18.
《无线电工程》2017,(3):54-57
基于通信对功率放大器的宽带和高效率的需求,给出了一款C波段GaN HEMT内匹配功率放大器的设计过程。该器件由2个3 mm栅宽的GaN功率管芯和制作在Al_2O_3陶瓷基片上的输入输出匹配电路组成。通过调节键合丝和电容,实现了功率放大器在4.4~5.0 GHz,5.2~5.9 GHz和6.0~6.6 GHz三个典型工程应用频段的设计,功放在这3个典型工程应用频段内输出功率均大于43 d Bm(20 W),附加效率大于60%,功率增益大于10 d B,充分显示了GaN功率器件宽带、高效率的工作性能。  相似文献   

19.
设计研制了一个8~18GHz的混合集成电路宽带高功率放大器。高功率放大器由基于GaAs MMIC工艺的4指微带兰格耦合器实现。为了减小电磁干扰,采用散热效果好的多层AlN材料作为功率放大器的载体。当输入功率为25dBm时,功率放大器输出连续波饱和功率在8–13 GHz 频率范围内大于39dBm,在其他频率范围内大于38.6dBm,在11.9GHz我们得到最大输出功率39.4dBm。在整个频带内,功率附加效率大于18%,当输入功率为18dBm时小信号增益为15.70.7 dB。高功率功率放大器尺寸为25mm*15mm*1.5mm.  相似文献   

20.
基于片上变压器耦合的CMOS功率放大器设计   总被引:1,自引:0,他引:1  
设计了一个2 GHz全集成的CMOS功率放大器(PA),该PA的匹配网络采用片上变压器实现,片上变压器用来实现单端信号和差分信号之间的转换和输入、输出端的阻抗匹配。采用ADS Momentum软件对片上变压器进行电磁仿真,在2 GHz频点,输入、级间和输出变压器的功率传输效率分别为74.2%,75.5%和78.4%。该PA基于TSMC 65 nm CMOS模型设计,采用Agilent ADS软件进行电路仿真,仿真结果表明:在2.5 V供电电压、2 GHz工作频率点,PA的输入、输出完全匹配到50Ω(S11=–22.4 d B、S22=–13.5 d B),功率增益为33.2 d B,最高输出功率达到23.4 d Bm,最高功率附加效率(PAE)达到35.3%,芯片面积仅为1.01 mm2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号