首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Analytical modelling of slot milling exit burr size   总被引:1,自引:0,他引:1  
A computational model was recently proposed by authors to approximate the tangential cutting force and consequently predict the thickness of the exit up milling side burr. To calculate the cutting force, the specific cutting force coefficient with respect to material properties was used. The model was sensitive to material yield strength and few cutting and tool geometrical parameters. However, the effects of cutting speed, tool coating, and tool rake angle on burr size were neglected. Other phenomena that could affect the burr size such as friction and abrasion were not taken into account either. Therefore, in the current work, a mechanistic force model is incorporated to propose a burr size prediction algorithm. The tangential and radial forces are calculated based on using specific cutting force coefficients in each direction. Furthermore, using the new approach, the burr size is predicated and the effects of a broad range of cutting parameters on burr size and friction angle are evaluated. Experimental values of burr size correlated well with prediction. It was found that the cutting speed has negligible effects on force and burr size. Lower friction angle was recorded when using larger feed per tooth. Consequently, thinner exit up milling side burr was obtained under high friction angle.  相似文献   

2.
We developed novel cutting tools that had either microscale or nanoscale textures on their surfaces. Texturing microscale or nanoscale features on a solid surface allowed us to control the tribological characteristics of the tool. The textures, which had pitches and depths ranging from several hundreds of nanometers to several tens of micrometers, were fabricated utilizing the ablation and interference phenomena of a femtosecond laser. The effect of the texture shape on the machinability of an aluminum alloy was investigated with a turning experiment applying the minimum quantity lubrication method. The texture decreased the cutting force due to the corresponding reduction in the friction on the rake face. This effect strongly depended on the direction of the texture; lower cutting forces were achieved when the texture was perpendicular to the chip flow direction rather than parallel. This effect was only observed at high cutting speeds over 420 m/min. These results indicate that the developed tools effectively improved the machinability of the alloy.  相似文献   

3.
高速切削时刀屑接触区的应力分布直接影响切削过程、切削温度及刀具磨损。利用分子动力学技术对纳米切削过程中刀屑接触区的应力分布特征进行研究,分别采用EAM势、Tersoff 势及Morse势计算单晶铜原子间、单晶硅原子间、工件原子与刀具原子间的相互作用力。分析纳米尺度下刀屑接触长度随切削距离变化的规律,探讨刀具前角对刀屑接触区应力分布的影响,通过描述刀屑接触区切屑原子的运动情况,为阐释刀屑接触区的应力分布特征提供依据。研究结果表明在刀-铜屑接触区,正应力在切削刃处最大,随着到切削刃距离的增大而减小,在刀-硅屑接触区,正应力以规则的波动形式逐渐减小。而切应力在切削刃处为负值,随着到切削刃距离的增大,切应力在刀屑接触长度的三分之二处增大到最大值后逐渐减小至零。  相似文献   

4.
在分析金属切削过程中刀具一切屑之间摩擦特点的基础上,提出了一个以紧密接触型为主要特征的摩擦特性方程式。实验表明,该公式较好地反映了刀一屑间摩擦情况。  相似文献   

5.
ABSTRACT

Machining presents strongly-coupled thermal, mechanical, and metallurgical phenomena, such as friction, plasticity, and wear. A knowledge of the temperature at any point in the cutting zone is consequently essential to understanding the cutting process. A method using infrared analysis with CCD (silicon) sensors, which can directly provide the entire thermal map of the surfaces in the cutting zone is presented. This method can validate numerical models and can provide information on the influence of different cutting parameters and conditions. The influence of the tool and the coating on the temperature distribution is also discussed.  相似文献   

6.
In machine tools, friction exists between the table and the guideways, and in ballscrews. In this paper, feed motor current is measured by a hall effect current sensor. It is used to calculate the motor torque which, in turn, is the frictional torque at steady state. Some frictional phenomena are studied in feed drive systems of a horizontal machining centre, such as the relationship between feedrate and frictional torque, the relationship between frictional torque and table feed position, and the slideway cover effects on frictional torque. Considering all these frictional phenomena, the relationship between the feed force and the feed motor current is obtained. Feed force can be estimated well from the feed motor current considering frictional behaviour. The relationship between the cutting force and the feed motor current is slightly different during up milling and down milling, because y(vertical) directional cutting force changes the frictional force.  相似文献   

7.
H. Chandrasekaran 《Wear》1976,36(2):133-145
Metal cutting studies were carried out to study the nature of the friction present at the tool-chip and tool-work contact surfaces in the presence of progressing flank wear. The distribution of the friction stresses was obtained during the machining of metallic lead with photoelastic model tools having a prehoned land simulating flank wear. The validity of the binomial law of friction along the rake contact surfaces and along the flank contact surfaces was verified and compared. The effects of increasing wearland upon the rake and flank contact phenomena were studied for correct evaluation of the role of friction upon the flank wear of tools. The studies have indicated the dominant influence of flank wear (particularly in the early stages) upon the two contact processes. It was found that the proportional contribution of the adhesive component of the friction coefficient was greater in the case of tool-chip contact, although the overall average coefficient of friction was higher along the flank wear-land.  相似文献   

8.
罗斐  涂宇  谭彬 《润滑与密封》2020,45(11):130-135
当使用AdvantEdge软件进行切削仿真实验时,刀屑摩擦因数对仿真结果的影响明显,但现有有限元软件未提供刀屑摩擦因数数据库。为建立一种基于AdvantEdge的斜角车削仿真实验的刀屑摩擦因数确定方法,首先提出基于斜角车削的摩擦力计算方法,然后建立AdvantEdge三维斜角车削仿真模型,设定不同切削速度、切削深度、进给量及摩擦因数,通过AdvantEdge 仿真正交试验,获得刀屑摩擦因数的经验计算公式。为验证刀屑摩擦因数经验计算公式的正确性,设定不同切削速度和切削深度及进给量的斜角车削正交试验,获得切削力数据,并基于摩擦因数经验计算公式求得对应刀屑摩擦因数。利用求得的摩擦因数数据修改AdvantEdge中刀屑摩擦因数参数,进行残余应力切削仿真实验。仿真实验获得的残余应力与实际切削实验获得的残余应力相比,误差在10%以内,证明提出的刀屑摩擦因数确定方法是正确的。  相似文献   

9.
通过预测加工304不锈钢时产生的切削力,从而对切削参数和刀具几何参数进行优化,是提高304不锈钢的加工精度、切屑控制及保障刀具寿命的基础。建立304不锈钢切削仿真模型,为提高模型的精确性,选择Johnson-Cook本构方程和黏结-滑移摩擦模型。结果表明:采用黏结-滑移摩擦模型的切削力预测结果更为准确,表明相对于纯剪切摩擦与库仑摩擦模型,黏结-滑移摩擦模型能更准确地描述刀-屑摩擦特性。展开不同参数下的切削力研究,研究发现:切削力随着刀具前角、后角和切削速度的增大而减小,随切削刃钝圆半径和切削厚度、宽度的增大而增大,其中切削宽度、厚度及前角对切削力大小影响较大。研究结果为304不锈钢切削效率的提高和切削机制的研究提供了理论依据。  相似文献   

10.
The interaction between the tool rake face and the chip is critical to chip morphology, cutting forces, surface quality, and other phenomena in machining. A large body of existing literature on nanometric machining or nano-scratching only considers the overall friction behavior by simply regarding the total force along tool movement direction as the friction force, which is not suitable for describing the intriguing friction phenomena along the tool/chip interface. In this study, the molecular dynamic (MD) simulation is used to model the nanometric machining process of single crystal copper with diamond tools. The effects of three factors, namely, tool rake angle, depth of cut, and tool travel distance, are considered. The simulation results reveal that the normal force and friction force distributions along tool/chip interface for all cases investigated are similarly shaped. It is found that the normal force consistently increases along the entire tool/chip interface when a more negative rake angle tool is used. However, the friction force increases as the rake angle becomes more negative only in the contact area close to the tool tip, and it reverses the trend in the middle of tool/chip interface. Meanwhile, the increase of depth of cut overall increases the normal force along the tool/chip interface, but the friction force does not necessarily increase. Also, the progress of tool into the work material does not change the patterns of normal force, friction force, or friction coefficient distributions to a great extent. More importantly, it is discovered that the traditional sliding model with a constant friction coefficient can be used to approximate the later section of friction distributions. However, no friction model for traditional machining is appropriate to describe the first section of friction distributions obtained from the MD simulation.  相似文献   

11.
Friction modeling between the tool and the workpiece plays an important role in predicting the minimum cutting thickness during TC4 micro machining and finite element method (FEM) cutting simulation. In this study, a new three-region friction modeling is proposed to illustrate the material flow mechanism around the friction zone in micro cutting; estimate the stress distributions on the rake, edge, and clearance faces of the tool; and predict the stagnation point location and the minimum cutting thickness. The friction modeling is established by determining the distribution of normal and shear stress. Then, it is applied to calculate the stagnation point location on the edge face and predict the minimum cutting thickness. The stagnation point and the minimum cutting thickness are also observed and illustrated in the FEM simulation. Micro cutting experiments are conducted to validate the accuracy of the friction and the minimum cutting thickness modeling. Comparison results show that the proposed friction model illustrates the relationship between the normal and sheer stress on the tool surface, thereby validating the modeling method of the minimum cutting thickness in micro cutting.  相似文献   

12.
影响刀屑之间摩擦的因素非常多,摩擦状况很难确定.为了研究摩擦对切削加工的影响,利用有限元分析软件,模拟了不同摩擦系数下直角切削加工过程,得出摩擦系数增大,变形系数增加,切削温度升高,已加工表面残余应力增大,减小切削中的摩擦有利提高金属切削加工质量,延长刀具的使用寿命.  相似文献   

13.
在干切削中,刀具遇到的突出问题是严重的摩擦和高温,只要合理地选择切削用量,减小切削热和摩擦对加工过程的影响,可以减轻干切削的不利条件,有效提高干切削刀具的耐用度,使干切削像湿切削一样在生产中顺利进行。通过试验的方法来证明干切削完全可以取得良好的加工效果。  相似文献   

14.
杨光  皮钧  刘中生 《机械工程学报》2017,53(19):100-106
超声辅助切削和切削液的联合使用能减小切削力和降低表面粗糙度,试图说明其机理,目的是为开发精密和超精加工技术打下基础。超声辅助切削和切削液的联合使用,从性质上改变了刀刃施加给工件表面的作用力,包括摩擦力和压力:在无切削液情况下,刀刃切入时,前刀面和后刀面施加给被切削面的摩擦力方向是指向刀刃;在有切削液情况下,刀刃切入时,前刀面和后刀面施加给被切削面的摩擦力方向是背向刀刃。背向刀刃的摩擦力,相对于指向刀刃的摩擦力而言,会导致剪切角增大,等效于更锋利的刀刃所产生的剪切角;切削液的存在使得刀刃施加给工件的力更加集中,等效于圆角半径更小的刀刃所能达到的效果;切削液在刀尖部位的压力分布不利于工件表面产生微裂纹。也就是说,超声辅助切削和切削液的联合使用起到了更锋利即更小圆角半径刀刃所起的效果,称之为非物理锐化。  相似文献   

15.
Micro- and nanocrystalline uniform diamond coatings with barrier tungsten layers for improved adhesion were deposited in a microwave plasma from methane-hydrogen mixtures on cemented carbide WC–6% Co substrates with high aspect ratios. Dynamic study of cutting forces and sliding friction has shown a significant improvement in the tribological properties of diamond-coated tools in cutting highly abrasive materials, such as A390 silumin and carbon-carbon composites. Confocal Raman spectrometry has been used to examine the features of wear mechanism in nano- and microcrystalline diamond coatings deposited in a microwave plasma.  相似文献   

16.
带减摩槽刀片切削机理的研究   总被引:2,自引:2,他引:0  
傅华  陈永洁 《工具技术》1998,32(2):7-10
对带减摩槽刀片的切削机理进行了理论研究,考察了减摩槽对主切削力(FZ)以及切削变形和断屑性能的影响,在此基础上得出三维断屑槽设计的一些有益结论,并通过平前刀面刀片和带减摩槽刀片的对比切削试验验证了这些结论,最后据此设计了一种新型断屑槽。  相似文献   

17.
涂层刀具车削淬硬钢时前刀面摩擦系数的自组织特征   总被引:1,自引:1,他引:0  
采用四种硬质合金涂层刀片对45和T10A淬硬钢两种材料进行了正交切削试验,通过所测得的三向切削力计算了前刀面平均摩擦系数,详细分析了前刀面摩擦系数随切削过程的变化情况,以及切削参数对摩擦系数的影响。结果表明前刀面摩擦系数随切削过程的进行迅速减小并趋于稳定,表征了涂层刀具切削淬硬钢时的自组织现象。  相似文献   

18.
在以往的金属切削热研究中,认为刀具后刀面处产生的切削热很小而被忽略。文章应用平面热源法,建立了刀具后刀面与工件摩擦面的切削热模型,推导了该摩擦面的切削热分配和切削温度理论计算公式,对影响后刀面切削热的主要因素进行了分析。研究结果表明,当刀具后刀面磨损带宽度达到一定程度时,则刀具后刀面处产生的切削热不能忽略。  相似文献   

19.
基于更新的拉格朗日方程,模拟了高速条件下金属正交切削的加工过程,并在刀-屑接触表面上分别建立了库仑摩擦模型和粘结-滑移摩擦模型,通过将切削力、吃刀抗力、切屑厚度和刀-屑接触长度的模拟预测值与相关文献的试验结果比较表明,粘结-滑移摩擦模型更符合实际的摩擦模型,即在金属切削过程中,刀-屑接触表面上同时存在滑移摩擦和粘结摩擦。  相似文献   

20.
甄恒洲 《工具技术》2009,43(3):65-68
在试验研究基础上进行了有后刀面磨损的正交切削模型分析。经过正交切削试验及理论分析,发现后刀面磨损无论是定性上还是定量上都不影响刀具基本切削或剪切过程,即不改变剪切角和摩擦角,但是在磨损区的摩擦力及整个切削力都会增加。充分利用剪切区分析理论,确定了剪切区的切削力、后刀面磨擦力和后刀面磨损量的对应关系,从而建立了在后刀面磨损情况下的切削力模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号