首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A chromosomal region present in Salmonella typhimurium but absent from related species was identified by hybridization. A DNA probe originating from 78 min on the S. typhimurium chromosome hybridized with DNA from Salmonella enteritidis, Salmonella heidelberg, and Salmonella dublin but not with DNA from Salmonella typhi, Salmonella arizonae, Escherichia coli, and Shigella serotypes. Cloning and sequence analysis revealed that the corresponding region of the S. typhimurium chromosome encodes a fimbrial operon. Long fimbriae inserted at the poles of the bacterium were observed by electron microscopy when this fimbrial operon was introduced into a nonpiliated E. coli strain. The genes encoding these fimbriae were therefore termed lpfABCDE, for long polar fimbriae. Genetically, the lpf operon was found to be most closely related to the fim operon of S. typhimurium, both in gene order and in conservation of the deduced amino acid sequences.  相似文献   

2.
An avirulent, streptomycin-resistant Salmonella typhimurium strain, SL5319, and its lipopolysaccharide (LPS)-deficient mutant strain, SL5325, differ in their ability to colonize the large intestines of streptomycin-treated mice. When fed to mice independently, the strains colonize equally well, but when fed together, the LPS-deficient mutant is outcompeted by the wild-type strain during establishment in the gut (J.J. Nevola, B.A.D. Stocker, D.C. Laux, and P.S. Cohen, Infect. Immun. 50:152-159, 1985). In the present study, the spatial distribution in the intestinal mucosal layer of the two strains was visualized by specific hybridization to bacterial rRNA in histological sections of mouse colon and cecum. The first day after infection, 9.8% of the smooth SL5319 cells observed in mucus were found to be associated with the mouse epithelial cells, but three days after infection, the corresponding fraction of adhering bacteria was reduced to 2.1%. The LPS-deficient S. typhimurium strain was confined to the part of the mucosal layer closest to the colonic lumen and was not observed to adhere to the epithelium either at day 1 or 3 after infection. Quantitative determinations of the distance from the S. typhimurium cells to the epithelial wall confirmed that the average distance for the rough S. typhimurium SL5325 was much larger than for its smooth counterpart, S. typhimurium SL5319. Quantification of the hybridization signal from bacteria isolated from the cecal mucus revealed that the two strains had the same ribosome concentration, indicating that they have the same potential for growth in the intestinal environment. On the basis of these observations, we suggest that the better colonization ability of the strain carrying wild-type LPS is due to the better abilities to penetrate the intestinal mucosal layer and to subsequently bind to the epithelial cells in vivo.  相似文献   

3.
Salmonella typhimurium infection of mice is an established model system for studying typhoid fever in humans. Using this model, we identified S. typhimurium genes which are absolutely required to cause fatal murine infection by testing independently derived transposon insertion mutants for loss of virulence in vivo. Of the 330 mutants tested intraperitoneally and the 197 mutants tested intragastrically, 12 mutants with 50% lethal doses greater than 1, 000 times that of the parental strain were identified. These attenuated mutants were characterized by in vitro assays which correlate with known virulence functions. In addition, the corresponding transposon insertions were mapped within the S. typhimurium genome and the nucleotide sequence of the transposon-flanking DNA was obtained. Salmonella spp. and related bacteria were probed with flanking DNA for the presence of these genes. All 12 attenuated mutants had insertions in known genes, although the attenuating effects of only two of these were previously described. Furthermore, the proportion of attenuated mutants obtained in this study suggests that mutations in about 4% of the Salmonella genome lead to 1,000-fold or greater attenuation in the mouse typhoid model of infection. Most of these genes appear to be required during the early stages of a natural infection.  相似文献   

4.
5.
Defensins are antibiotic peptides expressed in human and animal myeloid and epithelial cells. Due to the limited availability of natural peptides, the properties of human epithelial defensins have not been studied. We assayed the microbicidal activity of recombinant human intestinal defensin 5 (rHD-5) in the presence of salt (O to 150 mM NaCl) with varied pH (pH 5.5 to pH 8.5) and trypsin (25 and 250 microg/ml). rHD-5 exhibits microbicidal activity against Listeria monocytogenes, Escherichia coli, and Candida albicans. In contrast to cryptdins, the mouse intestinal defensins, rHD-5 is active against both mouse-virulent wild-type Salmonella typhimurium and its isogenic, mouse-avirulent phoP mutant. In the presence of salt, rHD-5 activity was reduced, and at 100 mM NaCl, activity against S. typhimurium was abolished. However, at all salt concentrations tested, rHD-5 remained bactericidal to L. monocytogenes. Activity against L. monocytogenes was not pH dependent but was diminished at pH 5.5 against wild-type S. typhimurium. This acid-induced resistance may have been mediated by the virulence gene regulator phoP, since the phoP mutant was equally sensitive at pH 5.5 and pH 7.4. In the presence of trypsin, rHD-5 was partially cleaved, but even then, rHD-5 at 100 microg/ml decreased the number of CFU of wild-type S. typhimurium by more than 99%. The persistence of microbicidal activity of rHD-5 under these conditions supports the notion that naturally occurring human intestinal defensin is an effective arm of mucosal host defense.  相似文献   

6.
The formation of filamentous appendages on Salmonella typhimurium has been implicated in the triggering of bacterial entry into host cells (C. C. Ginocchio, S. B. Olmsted, C. L. Wells, and J. E. Galán, Cell 76:717-724, 1994). We have examined the roles of cell contact and Salmonella pathogenicity island 1 (SPI1) in appendage formation by comparing the surface morphologies of a panel of S. typhimurium strains adherent to tissue culture inserts, to cultured epithelial cell lines, and to murine intestine. Scanning electron microscopy revealed short filamentous appendages 30 to 50 nm in diameter and up to 300 nm in length on many wild-type S. typhimurium bacteria adhering to both cultured epithelial cells and to murine Peyer's patch follicle-associated epithelia. Wild-type S. typhimurium adhering to cell-free culture inserts lacked these filamentous appendages but sometimes exhibited very short appendages which might represent a rudimentary form of the cell contact-stimulated filamentous appendages. Invasion-deficient S. typhimurium strains carrying mutations in components of SPI1 (invA, invG, sspC, and prgH) exhibited filamentous appendages similar to those on wild-type S. typhimurium when adhering to epithelial cells, demonstrating that formation of these appendages is not itself sufficient to trigger bacterial invasion. When adhering to cell-free culture inserts, an S. typhimurium invG mutant differed from its parent strain in that it lacked even the shorter surface appendages, suggesting that SPI1 may be involved in appendage formation in the absence of epithelia. Our data on S. typhimurium strains in the presence of cells provide compelling evidence that SPI1 is not an absolute requirement for the formation of the described filamentous appendages. However, appendage formation is controlled by PhoP/PhoQ since a PhoP-constitutive mutant very rarely possessed such appendages when adhering to any of the cell types examined.  相似文献   

7.
Bordetella pertussis fimbriae are composed of a major subunit, Fim2 or Fim3, and the minor subunit FimD. Using immunoelectron microscopy, we provide evidence that FimD is located at the fimbrial tip. The role of FimD in colonization of the mouse respiratory tract was studied by using two fimbrial mutants: a mutant completely devoid of fimbriae (designated FimD-) and a mutant devoid of the major fimbrial subunits but still producing the minor subunit (designated FimD+). The ability of the two fimbrial mutants to colonize the nasopharynx, trachea, and lungs was compared with those of the wild type parental strain and a filamentous hemagglutinin (FHA) mutant. Of the three mutants studied, the FimD- mutant showed the greatest defect, colonizing less well in the nasopharynx, trachea, and lungs. The most pronounced defect in colonizing ability of the three mutants was observed in the trachea. However, the colonizing defect of the FHA and FimD+ mutants in the trachea was observed only during the first 3 days of infection. After 10 days, the colonization level was nearly restored to wild-type levels. The FHA and FimD+ mutants showed a slight colonization defect in the nasopharynx but no defect in the lungs. A maltose binding protein-FimD fusion protein and a peptide derived from FimD were able to bind to heparin, a member of a class of sulfated sugars which are ubiquitous in the respiratory tract. Recently it was shown (W. L. W. Hazenbos, C. A. W. Geuijen, B. M. van den Berg, F. R. Mooi, and R. van Furth, J. Infect. Dis. 171:924-929, 1995) that FimD also binds to the integrin VLA-5, and our results suggest that the binding of B. pertussis to these two molecules plays an important role in colonization of the respiratory tract of the mouse.  相似文献   

8.
In the mouse model of Salmonella typhimurium infection, the specialized antigen-sampling intestinal M cells are the primary route of Salmonella invasion during the early stages of infection. Under certain experimental conditions, M-cell invasion is accompanied by M-cell destruction and loss of adjacent regions of the follicle-associated epithelium (FAE), although the conditions responsible for expression of the cytotoxic phenotype in a proportion of previous studies have not been defined. In the present study, we have demonstrated that the cytotoxic effect exerted by wild-type S. typhimurium on mouse Peyer's patch FAE is dependent on the inoculum composition. We have also demonstrated that the extent of FAE destruction correlates with the extent of M-cell invasion. Bacteria inoculated in Luria-Bertani (LB) broth induce extensive FAE loss and exhibit efficient M-cell invasion, whereas bacteria inoculated in phosphate-buffered saline fail to induce significant FAE disruption and invade M cells at significantly lower levels. Similarly, inoculation in LB significantly enhances invasion of Madin-Darby canine kidney cells by wild-type S. typhimurium. Mutants defective for expression of invA, a component of Salmonella pathogenicity island 1 which is vital for efficient invasion of cultured cells, fail to induce FAE destruction and, when inoculated in LB, are attenuated for M-cell invasion. Variation in inv gene expression is, therefore, one possible mechanism by which inoculate composition may regulate the virulence of wild-type S. typhimurium. Our findings suggest that the composition of the gut luminal contents may be critical in determining the outcome of naturally acquired Salmonella infections and that both vaccine formulation and dietary status of vaccine recipients may significantly affect the efficacy and safety of live Salmonella oral vaccine delivery systems.  相似文献   

9.
The motility imparted by the periplasmic flagella (PF) of Serpulina hyodysenteriae is thought to play a pivotal role in the enteropathogenicity of this spirochete. The complex PF are composed of multiple class A and class B polypeptides. Isogenic strains containing specifically disrupted flaAl or flaB1 alleles remain capable of expressing PF, although such mutants display aberrant motility in vitro. To further examine the role that these proteins play in the maintenance of periplasmic flagellar structural integrity, motility, and fitness for intestinal colonization, we constructed a novel strain of S. hyodysenteriae which is deficient in both FlaA1 and FlaB1. To facilitate construction of this strain, a chloramphenicol gene cassette, with general application as a selectable marker in prokaryotes, was developed. The cloned flaAl and flaB1 genes were disrupted by replacement of internal fragments with chloramphenicol and kanamycin gene cassettes, respectively. The inactivated flagellar genes were introduced into S. hyodysenteriae, and allelic exchange at the targeted chromosomal flaA1 and flaB1 loci was verified by PCR analysis. Immunoblots or cell lysates with antiserum raised against purified FlaA or FlaB confirmed the absence of the corresponding sheath and core proteins in this dual flagellar mutant. These mutations selectively abolished the expression of the targeted genes without affecting the synthesis of other immunologically related FlaB proteins. The resulting flaA1 flaB1 mutant exhibited altered motility in vitro. Surprisingly, it was capable of assembling periplasmic flagella that were morphologically normal as evidenced by electron microscopy. The virulence of this strain was assessed in a murine model of swine dysentery by determining the incidence of cecal lesions and the persistence of S. hyodysenteriae in the gut. Mice challenged with the wild-type strain or a passage control strain showed a dose-related response to the challenge organism. The dual flagellar mutant was severely attenuated in murine challenge experiments, suggesting that the FlaA1 and FlaB1 proteins are dispensable for flagellar assembly but critical for normal flagellar function and colonization of mucosal surfaces of the gastrointestinal tract. This strain represents the first spirochete engineered to contain specifically defined mutations in more than one genetic locus.  相似文献   

10.
An avirulent live delta cya delta crp Salmonella typhimurium strain chi 3985 that precludes colonization and invasion of chickens by homologous and heterologous Salmonella serotypes was evaluated for its long-term protection efficacy. Chickens vaccinated orally at 2 and 4 wk of age were assessed for protection against oral challenge with wild-type S. typhimurium and Salmonella enteritidis strains at 3, 6, 9, and 12 mo of age. A comparison of Salmonella isolation from vaccinated and nonvaccinated layers after challenge with S. typhimurium or S. enteritidis showed that delta cya delta crp S. typhimurium chi 3985 induced excellent protection against intestinal, visceral, reproductive tract, and egg colonization, invasion, and/or contamination by Salmonella. The duration of protection lasted for 11 mo after vaccination, at which time the experiment was terminated. S. enteritidis and S. typhimurium were isolated from the yolk, albumen, and shells of eggs laid by nonvaccinated chickens challenged with Salmonella. S. typhimurium caused pathological lesions in nonvaccinated chickens, whereas vaccinated and nonvaccinated chickens challenged with S. enteritidis showed no pathological lesion in the visceral and reproductive organs. Vaccination with chi 3985 prevented transmission of S. typhimurium or S. enteritidis into eggs laid by vaccinated layers with no effect on egg production. To our knowledge, this is the first publication confirming that vaccination with live avirulent Salmonella can induce long-term protection against Salmonella infection in layers.  相似文献   

11.
We compared the abilities of different Salmonella enterica var. Typhimurium (S. typhimurium) strains harboring mutations in the genes aroA, aroAD, purA, ompR, htrA, and cya crp to present the heterologous antigen, C fragment of tetanus toxin, to the mouse immune system. Plasmid pTETtac4, encoding C fragment, was transferred into the various S. typhimurium mutants, and the levels of antigen expression were found to be equivalent. After primary oral immunization of BALB/c mice, all attenuated strains were capable of penetrating the gut epithelium and colonizing the Peyer's patches and spleens of mice. Of all strains compared, the delta purA mutant colonized and persisted in the Peyer's patches at the lowest level, whereas the delta htrA mutant colonized and persisted in the spleen at the lowest level. The level of specific antibody elicited by the different strains against either S. typhimurium lipopolysaccharide or tetanus toxoid was strain dependent and did not directly correlate to the mutants' ability to colonize the spleen. The level of immunoglobulin G1 (IgG1) and IgG2a antibody specific for tetanus toxoid was determined in mice immunized with four S. typhimurium mutants. The level of antigen-specific IgG1 and IgG2a was significantly lower in animals immunized with S. typhimurium delta purA. Antigen-specific T-cell proliferation assays indicated a degree of variability in the capacity of some strains to elicit T cells to the heterologous antigen. Cytokine profiles (gamma interferon and interleukin-5) revealed that the four S. typhimurium mutants tested induced a Th1-type immune response. Mice were challenged with a lethal dose of tetanus toxin 96 days after oral immunization. With the exception of the S. typhimurium delta purA mutant, all strains elicited a protective immune response. These data indicate that the level of total Ig specific for the carried antigen, C fragment, does not correlate with the relative invasiveness of the vector, but it is determined by the carrier mutation and the background of the S. typhimurium strain.  相似文献   

12.
The htrB gene product of Haemophilus influenzae contributes to the toxicity of the lipooligosaccharide. The htrB gene encodes a 2-keto-3-deoxyoctulosonic acid-dependent acyltransferase which is responsible for myristic acid substitutions at the hydroxy moiety of lipid A beta-hydroxymyristic acid. Mass spectroscopic analysis has demonstrated that lipid A from an H. influenzae htrB mutant is predominantly tetraacyl and similar in structure to lipid IV(A), which has been shown to be nontoxic in animal models. We sought to construct a Salmonella typhimurium htrB mutant in order to investigate the contribution of htrB to virulence in a well-defined murine typhoid model of animal pathogenesis. To this end, an r- m+ galE mutS recD strain of S. typhimurium was constructed (MGS-7) and used in inter- and intrastrain transduction experiments with both coliphage P1 and Salmonella phage P22. The Escherichia coli htrB gene containing a mini-Tn10 insertion was transduced from E. coli MLK217 into S. typhimurium MGS-7 via phage P1 and subsequently via phage P22 into the virulent Salmonella strain SL1344. All S. typhimurium transductants showed phenotypes similar to those described for the E. coli htrB mutant. Mass spectrometric analysis of the crude lipid A fraction from the lipopolysaccharide of the S. typhimurium htrB mutant strain showed that for the dominant hexaacyl form, a lauric acid moiety was lost at one position on the lipid A and a palmitic acid moiety was added at another position; for the less abundant heptaacyl species, the lauric acid was replaced with palmitoleic acid.  相似文献   

13.
It was previously reported that Salmonella typhimurium LT2 cob mutants defective in the biosynthesis of vitamin B12 (cobalamin) are more virulent than the wild type in mice. Here we show that the strains used previously are non-isogenic and that the proposed increase in virulence of the cob mutant strain results from an uncharacterized mutation in the "wild type" which attenuates virulence, most likely by decreasing expression of the spv genes on the virulence plasmid. As a result the cob mutant will appear as hyper-virulent. Examination of the virulence of reconstructed wild-type and cob mutant strains showed that their growth rates were similar in mice, and we conclude that vitamin B12 does not affect the virulence of S. typhimurium LT2.  相似文献   

14.
An asd-complementing mini-Tn5 transposon was constructed for random insertion of the Escherichia coli LT enterotoxin genes (elt) into the genome of Deltaasd attenuated strains of Salmonella typhimurium. Transfer of the minitransposon to different S. typhimurium strains resulted in random integration only in strain chi4072, while in strain chi3987, which harbours the virulence plasmid, over 20% of the insertions occurred at the same site. Expression of elt was found to be highest in Salmonella isolates carrying the mini-Tn5 integrated at the preferred site, which was mapped to an uncharacterised region of the virulence plasmid. Sequence analysis of the integration site showed that it lies within an open reading frame with sequence similarity to E. coli leuO and contiguous to a novel fimbrial locus.  相似文献   

15.
Salmonella serotype typhimurium transpositional mutants altered in resistance to biliary salts and detergents were isolated previously. We have characterized further the LX1054 mutant strain, the most sensitive of them. The chromosomal DNA segment flanking transposon insertion was cloned and sequenced. The highest level of identity was found for the acrB (formerly acrE) gene of Escherichia coli, a gene encoding a drug efflux pump of the Acr family. LX1054 exhibited a reduced capacity to colonize the intestinal tract. After passages in mice, the mutant strain lost the sensitive phenotype. In vitro, a resumption of growth appeared after 17 h of culture in medium with cholate or other tested biological or chemical detergents. Then, the acquired resistant phenotype seemed stable. The data suggested a role of S. typhimurium acrB-like gene in resistance to biliary salts and detergents and in mice intestinal colonization. However, the local and transient sensitivity observed in vivo, and the in vitro adaptations suggest that several detergent-resistance mechanisms operate in S. typhimurium.  相似文献   

16.
To evaluate the influence of serovar-specific plasmids on salmonella virulence in calves, experiments were performed involving infection, by the oral route, with mixtures of strains containing equal counts of a plasmid-carrying and a plasmid-free strain of the same serovar. The concentration ratio between the plasmid-carrying and the plasmid-free strain which had developed in the organs of the infected animals was used for a comparative evaluation of virulence and pathogenetic behaviour of the strains. While in the S. typhimurium strains studied, the presence of the plasmid was accompanied by a significantly increased colonization and multiplication of the agent in the host's body, examination of S. enteritidis and S. dublin revealed that the plasmid-free strains exhibited identical or even significantly higher bacterial counts than the plasmid-carrying strains in organs. The fact that plasmid-free salmonella strains with a high virulence for calves have been found demonstrates that the presence of a serovar-specific plasmid is not an indispensable requirement for the development of salmonellosis in calves.  相似文献   

17.
18.
The avirulent Salmonella typhimurium chi3985 was used to vaccinate white leghorn chickens at 16 and 18 weeks of age, and the effect of maternal antibody on Salmonella colonization of progeny of vaccinated hens was assessed with S. typhimurium F98 or chi3985. Progeny of hens that had been vaccinated at 1 and 3 or 2 and 4 weeks of age with chi3985 were used to determine the effect of maternal immunity on vaccine efficacy. Vaccination of hens induced long-lasting Salmonella-specific antibodies which were transferred into eggs and were detected as immunoglobulin G (IgG) in the egg yolk. Maternal antibody was detected in the progeny of vaccinated birds as IgG and IgA in serum and intestinal fluid, respectively. The titer of maternally transmitted IgG or IgA was highest in the first week of life of the progeny and declined with age. Maternal antibodies prevented colonization of the chicks by S. typhimurium chi3985 and reduced colonization by S. typhimurium F98. Overall, chicks from vaccinated hens had significantly higher antibody responses than did the progeny of nonvaccinated hens after oral infection with Salmonella strains. Maternal antibody reduced the efficacy of vaccination of progeny with chi3985 at 1 and 3 weeks of age. But vaccination at 2 and 4 weeks of age induced excellent protection against challenge with S. typhimurium F98 or S. enteritidis 27A PT 8 in birds from vaccinated hens and in specific-pathogen-free chickens. Vaccination of chickens at 2 and 4 weeks of age has been shown to protect the birds against challenge with homologous and heterologous Salmonella serotypes. A combination of vaccination of adult animals and use of the progeny of vaccinated birds will enhance effective control of Salmonella infections in the poultry industry. This will complement the present control of Salmonella-associated food poisoning caused by Salmonella enteritidis in eggs because the avirulent S. typhimurium vaccine strain chi3985 induced excellent protection against S. enteritidis in chickens.  相似文献   

19.
To investigate the role of putative virulence factors of Streptococcus pyogenes (group A streptococcus; GAS) in causing disease, we introduced specific mutations in GAS strain B514, a natural mouse pathogen, and tested the mutant strains in two models of infection. To study late stages of disease, we used our previously described mouse model (C3HeB/FeJ mice) in which pneumonia and systemic spread of the streptococcus follow intratracheal inoculation. To study the early stages of disease, we report here a model of long-term (at least 21 days) throat colonization following intranasal inoculation of C57BL/10SnJ mice. When the three emm family genes of GAS strain B514-Sm were deleted, the mutant showed no significant difference from the wild type in induction of long-term throat colonization or pneumonia. We inactivated the scpA gene, which encodes a complement C5a peptidase, by insertion of a nonreplicative plasmid and found no significant difference from the wild type in the incidence of throat colonization. However, there was a small but statistically significant decrease in the incidence of pneumonia caused by the scpA mutant. Finally, we demonstrated a very important effect of the hyaluronic acid capsule in both models. Following intranasal inoculation of mice with a mutant in which a nonreplicative plasmid was inserted into the hasA gene, which encodes hyaluronate synthase, we found that all bacteria recovered from the throats of the mice were encapsulated revertants. Following intratracheal inoculation with the hasA mutant, the incidence of pneumonia within 72 h was significantly reduced from that of the control strain (P = 0.006). These results indicate that the hyaluronic acid capsule of S. pyogenes B514 confers an important selective advantage for survival of the bacteria in the upper respiratory tract and is also an important determinant in induction of pneumonia in our model system.  相似文献   

20.
HlyU upregulates expression of the haemolysin, HlyA, of Vibrio cholerae. DNA sequence analysis indicates that HlyU is an 11.9 kDa protein containing a putative helix-turn-helix motif and belonging to a family of small regulatory proteins, including NoIR (Rhizobium meliloti), SmtB (Synechococcus PCC 7942) and ArsR (plasmids R773, Escherichia coli; pI258, Staphylococcus aureus; and pSX267, Staphylococcus xylosus). An hlyU mutant was constructed by insertional inactivation, and found to be deficient in the production of both the haemolysin and a 28 kDa secreted protein. The mutant was assessed for virulence in the infant mouse cholera model, revealing a 100-fold increase in the LD50. This suggests that HlyU promotes expression of virulence determinant(s) in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号