首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Capacitive-type strain sensors based on hydrogel ionic conductors have undergone rapid development benefited from their robust structure, drift-free sensing, higher sensitivity, and precision. However, the unsatisfactory electro-mechanical stability of the conventional hydrogel conductors, which are normally vulnerable to large deformation and severe mechanical impacts, remains a challenge. In addition, there is not enough research regarding the adhesiveness and mechanical properties of the dielectric layer, which is also critical for the mechanical adaptability of the whole device. Here, a dynamically super-tough capacitive-type strain sensor based on energy-dissipative dual-crosslinked hydrogel conductors and an organogel dielectric with high adhesive strength is developed. Combining with the mechanical advantages of the hydro/organo-gels, the capacitive strain sensor exhibits high stretchability and superior linear dependence of sensitivity with a gauge factor of ≈0.8% at 100% strain. Moreover, the sensor displayed ultrastability against various severe mechanical stimuli that can even survive unprecedentedly from extremely catastrophic car run-over by 20 times. With these synergistic mechanical advantages, the capacitive strain sensor is successfully applied as a highly-reliable wearable sensing system to monitor diverse faint physiological signals and large-range human motions.  相似文献   

2.
    
Large arrays of high aspect ratio, artificial hydrogel based cilia that can respond to multiple stimuli are produced by means of micro‐fabrication techniques. The cilia operate in aqueous solutions and are sensitive to pH, electric and/or magnetic fields. The biomimetic system combines both sensing and motility. Detection of changes in environment, such as a decrease in pH, triggers a collective response, to an external time‐dependent magnetic field.  相似文献   

3.
4.
    
High mechanical strength, excellent toughness, low hysteresis, and robust resilience are of great importance for stretchable conductive hydrogels (CHs) to heighten their reliabilities for self-powered sensing applications. However, it still remains challenging to simultaneously obtain the mutually exclusive performances. Herein, an intrinsically conductive and adhesive hydrogel is fabricated by one-step radical polymerization of acrylamide (AAm), three hydroxy groups together clustered-N-[tris(hydroxymethyl)methyl]acrylamide (THMA), and cationic 1-Butyl-3-Vinylimidazolium Bromide (ILs) dissolved in core-shell structurally dispersed PEDOT:PSS (PP) solution. Owing to abundant clustered hydrogen bonds, electrostatic interactions between PILs chains and anionic PSS shells, and polymer chain entanglements, the CHs feature superior mechanical properties with a high tensile strength (0.25 MPa), fracture strain (1015%), fracture toughness (1.22 MJ m-3), fracture energy of 36.5 kJ m-2 and extremely low hysteresis (5%), and display excellent resilience and fatigue resistance. As a result, the CHs indicate excellent sensing properties with a gauge factor up to 10.46, a broad sensing range of strain (1-900%) and pressure (0.05-100 kPa), and fast responsive rate, thus qualifying for monitoring reliably and accurately large and tiny human movements in daily life. Moreover, the hydrogel-assembled triboelectric nanogenerators (TENGs) exhibit excellent and stable electrical output performances, which are greatly promising in self-powered flexible wearable electronics.  相似文献   

5.
6.
7.
    
The first-generation ionic skins demonstrate great advantages in the tunable mechanical properties, high transparency, ionic conductivities, and multiple sensory capacities. However, little attention is paid to the interfacial interactions among the ambient environment, natural organisms, and the artificial skins. In particularly, current ionic skins based on traditional synthetic hydrogels suffer from dehydration in vitro and lack of substance communication channels with biological tissues. Herein, this work develops a bio-inspired hydrogel to address these key challenges. The hydrogel is designed with natural moisturizing factors to lock water, biomineral ions to transmit signals, and biomimetic gradient channels to transport substances from non-living to living interfaces. It is stable in ambient condition, adhesive and hydrated on mammal skins, and capable of non-invasive point-to-point theranostics. This theranostic ionic skin realizes sensitive detection, enhanced treatment efficacy, and reduced side effects toward major diseases in vitro. It will shed light on the hydrogel bioelectronics with excellent biocompatibility, bio-protection, and bio-integration for human–machine interfaces and intelligent theranostics.  相似文献   

8.
9.
    
A multifunctional nanohybrid composed of a pH‐ and thermoresponsive hydrogel, poly(N‐isopropylacrylamide‐co‐acrylic acid) [poly(NIPAM‐co‐AAc)], is synthesized in situ within the mesopores of an oxidized porous Si template. The hybrid is characterized by electron microscopy and by thin film optical interference spectroscopy. The optical reflectivity spectrum of the hybrid displays Fabry–Pérot fringes characteristic of thin film optical interference, enabling direct, real‐time observation of the pH‐induced swelling, and volume phase transitions associated with the confined poly(NIPAM‐co‐AAc) hydrogel. The optical response correlates to the percentage of AAc contained within the hydrogel, with a maximum change observed for samples containing 20% AAc. The swelling kinetics of the hydrogel are significantly altered due to the nanoscale confinement, displaying a more rapid response to pH or heating stimuli relative to bulk polymer films. The inclusion of AAc dramatically alters the thermoresponsiveness of the hybrid at pH 7, effectively eliminating the lower critical solution temperature (LCST). The observed changes in the optical reflectivity spectrum are interpreted in terms of changes in the dielectric composition and morphology of the hybrids.  相似文献   

10.
    
Sophisticated sensing and actuation capabilities of many living organisms in nature have inspired scientists to develop biomimetic somatosensory soft robots. Herein, the design and fabrication of homogeneous and highly conductive hydrogels for bioinspired somatosensory soft actuators are reported. The conductive hydrogels are synthesized by in situ copolymerization of conductive surface-functionalized MXene/Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) ink with thermoresponsive poly(N-isopropylacrylamide) hydrogels. The resulting hydrogels are found to exhibit high conductivity (11.76 S m−1), strain sensitivity (GF of 9.93), broad working strain range (≈560% strain), and high stability after over 300 loading–unloading cycles at 100% strain. Importantly, shape-programmable somatosensory hydrogel actuators with rapid response, light-driven remote control, and self-sensing capability are developed by chemically integrating the conductive hydrogels with a structurally colored polymer. As the proof-of-concept illustration, structurally colored hydrogel actuators are applied for devising light-driven programmable shape-morphing of an artificial octopus, an artificial fish, and a soft gripper that can simultaneously monitor their own motions via real-time resistance variation. This work is expected to offer new insights into the design of advanced somatosensory materials with self-sensing and actuation capabilities, and pave an avenue for the development of soft-matter-based self-regulatory intelligence via built-in feedback control that is of paramount significance for intelligent soft robotics and automated machines.  相似文献   

11.
    
Natural microbial sensing circuits can be rewired into new gene networks to build living sensors that detect and respond to disease-associated biomolecules. However, synthetic living sensors, once ingested, are cleared from the gastrointestinal (GI) tract within 48 h; retaining devices in the intestinal lumen is prone to intestinal blockage or device migration. To localize synthetic microbes and safely extend their residence in the GI tract for health monitoring and sustained drug release, an ingestible magnetic hydrogel carrier is developed to transport diagnostic microbes to specific intestinal sites. The magnetic living hydrogel is localized and retained by attaching a magnet to the abdominal skin, resisting the peristaltic waves in the intestine. The device retention is validated in a human intestinal phantom and an in vivo rodent model, showing that the ingestible hydrogel maintains the integrated living bacteria for up to seven days, which allows the detection of heme for GI bleeding in the harsh environment of the gut. The retention of microelectronics is also demonstrated by incorporating a temperature sensor into the magnetic hydrogel carrier.  相似文献   

12.
    
Emerging virtual and augmented reality technologies can transform human activities in myriad domains, lending tangible, embodied form to digital data, services, and information. Haptic technologies will play a critical role in enabling human to touch and interact with the contents of these virtual environments. The immense variety of skilled manual tasks that humans perform in real environments are only possible through the coordination of touch sensation, perception, and movement that together comprise the haptic modality. Consequently, many research groups are vigorously investigating haptic technologies for virtual reality. A longstanding research goal in this area has been to create haptic interfaces that allow their users to touch and feel plausibly realistic virtual objects. In this progress report, the perspective on this unresolved research challenge is shared, guided by the observation that no technologies can even approximately match the capabilities of the human sense of touch. Factors that have it challenging to engineer haptic technologies for virtual reality, including the extraordinary spatial and temporal tactile acuity of the skin, and the complex interplay between continuum mechanics, haptic perception, and interaction are identified. The perspective on how these challenges may be overcome through convergent research on haptic perception, mechanics, electronics, and material technologies is presented.  相似文献   

13.
    
Due to their intrinsic flexibility, tunable conductivity, multiple stimulus-response, and self-healing ability, ionic conductive hydrogels have drawn significant attention in flexible/wearable electronics. However, challenges remain because traditional hydrogels inevitably faced the problems of losing flexibility and conductivity because of the inner water loss when exposed to the ambient environment. Besides, the water inside the hydrogel will freeze at the water icing temperatures, making the device hard and fragile. As a promising alternative, organogels have attracted wide attention because they can, to some extent, overcome the above drawbacks. Herein, a kind of organogel ionic conductor (MOIC) by a self-polymerization reaction is involved, which is super stretchable, anti-drying, and anti-freezing. Meanwhile, it can still maintain high mechanical stability after alternately loading/unloading at the strain of 600% for 600 s (1800 cycles). Using this MOIC, high-performance triboelectric nanogenerator (TENG) is constructed (MOIC-TENG) to harvest small mechanical energy even the MOIC electrode underwent an extremely low temperature. In addition, multifunctional flexible/wearable sensors (strain sensor, piezoresistive sensor, and tactile sensor) are realized to monitor human motions in real time, and recognize different materials by triboelectric effect. This study demonstrates a promising candidate material for flexible/wearable electronics such as electronic skin, flexible sensors, and human-machine interfaces.  相似文献   

14.
    
Nanoparticle network hydrogels (NNHs) in which nanoparticles are used as a key building block to build the gel network have attracted significant interest given their potential to leverage the favorable properties of both hydrogels (e.g., hydrophilicity, tunable pore sizes, mechanics, etc.) and a variety of different nanoparticles (e.g., high surface area, chemical activity, independently tunable porosity, mechanics) to create new functional materials. Herein, recent progress in the design and use of NNHs is comprehensively reviewed, with an emphasis on defining the typical gel morphologies/architectures that can be achieved with NNHs, the typical crosslinking approaches used to fabricate NNHs, the fundamental properties and functional benefits of NNHs, and the reported applications of NNHs in electronics (flexible electronics, sensors), environmental (sorbents, separations), agriculture, self-cleaning-materials, and biomedical (drug delivery, tissue engineering) applications. In particular, the way in which the NNH structure is applied to improve the performance of the hydrogel in each application is emphasized, with the aim to develop a set of principles that can be used to rationally design NNHs for future uses.  相似文献   

15.
    
In this study, a binary networked conductive hydrogel is prepared using acrylamide and polyvinyl alcohol. Based on the obtained hydrogel, an ultrastretchable pressure sensor with biocompatibility and transparency is fabricated cost effectively. The hydrogel exhibits impressive stretchability (>500%) and superior transparency (>90%). Furthermore, the self‐patterned microarchitecture on the hydrogel surface is beneficial to achieve high sensitivity (0.05 kPa?1 for 0–3.27 kPa). The hydrogel‐based pressure sensor can precisely monitor dynamic pressures (3.33, 5.02, and 6.67 kPa) with frequency‐dependent behavior. It also shows fast response (150 ms), durable stability (500 dynamic cycles), and negligible current variation (6%). Moreover, the sensor can instantly detect both tiny (phonation, airflowing, and saliva swallowing) and robust (finger and limb motions) physiological activities. This work presents insights into preparing multifunctional hydrogels for mechanosensory electronics.  相似文献   

16.
    
Fluidic soft sensors have been widely used in wearable devices for human motion capturing. However, thus far, the biocompatibility of the conductive liquid, the linearity of the sensing signal, and the hysteresis between the loading and release processes have limited the sensing quality as well as the applications of these sensors. In this paper, silicone based strain and force sensors composed of a novel biocompatible conductive liquid (potassium iodide and glycerol solution) are introduced. The strain sensors exhibit negligible hysteresis up to 5 Hz, with a gauge factor of 2.2 at 1 Hz. The force sensors feature a novel multifunctional layered structure, with microcylinder‐filled channels to achieve high linearity, low hysteresis (5.3% hysteresis at 1 Hz), and good sensitivity (100% resistance increase at a 5 N load). The sensors' gauge factors are stable at various temperatures and humidity levels. These biocompatible, low hysteresis, and high linearity sensors are promising for safe and reliable diagnostic devices, wearable motion capture, and compliant human–computer interfaces.  相似文献   

17.
18.
    
Double‐network hydrogels (DN gels), despite their high water content, are the strongest and toughest soft and wet materials available. However, in conventional DN gels, which show extraordinarily high mechanical performance comparable to that of industrial rubbers, the first network must be a strong polyelectrolyte and this requirement greatly hinders the widespread application of these gels. A general method involving the use of a “molecular stent” for the synthesis of tough DN gels using any hydrophilic polymer as the first network is reported. This is the first reported method for the synthesis of tough DN gels using various neutral or weak polyelectrolyte hydrogels as the first network. This method helps extend the DN gel concept to various functional polymers and may increase the number of applications of hydrogels in various fields.  相似文献   

19.
    
A cancer-selective self-reporting sensor based on a redox-responsive mineralized conductive hydrogel (M-Hydrogel) is proposed with cancer-specific viscosity, adhesive strength, stretchability, tunable conductivity, and fluorescence. The redox-triggered release of carbonized polydopamine (cPDA) from the loaded disulfide-crosslinked polymer dots (PD@cPDA) in the hydrogel matrix modulates the macroporous structure responsible for self-recognizable cancer sensing and photothermal activity for cancer therapy. The self-reporting nature of the M-Hydrogel sensor is highlighted when in vicinity of a high glutathione (GSH) level owing to the controllable pore size and H-bonding by cPDA, as confirmed by experiments on cancer cells (HeLa, PC3, B16-F10-GFP, and SNU-C2A) and normal cells (CHO-K1). The lower viscosity during syringe test along with the exceptional adhesiveness and stretchability with various cancer cells, combined with a high wireless pressure-sensing response absent in normal conditions, confirms the dependence of self-recognizable behavior on the cancer microenvironment. The M-Hydrogel demonstrates excellent ex situ sensing with tumor ablation, after implantation in mice xenografted with HeLa cells, with the wireless sensing system, enabling real-time analysis coupled with the upregulation of pro-apoptotic markers P53 and BAX in the tumor. Therefore, this self-reporting sensor may facilitate a strategy for innovative and convenient cancer diagnostics.  相似文献   

20.
    
Self-healing ionic conductive hydrogels have shown significant potential in applications like wearable electronics, soft robotics, and prosthetics because of their high strain sensitivity and mechanical and electrical recovery after damage. Despite the enormous interest in these materials, conventional fabrication techniques hamper their use in advanced devices since only limited geometries can be obtained, preventing proper conformability to the complexity of human or robotic bodies. Here, a photocurable hydrogel with excellent sensitivity to mechanical deformations based on a semi-interpenetrating polymeric network is reported, which holds remarkable mechanical properties (ultimate tensile strain of 550%) and spontaneous self-healing capabilities, with complete recovery of its strain sensitivity after damages. Furthermore, the developed material can be processed by digital light processing 3D printing technology to fabricate complex-shaped strain sensors, increasing mechanical stress sensitivity with respect to simple sensor geometries, reaching an exceptional pressure detection limit below 1 Pa. Additionally, the hydrogel is used as an electrolyte in the fabrication of a laser-induced graphene-based supercapacitor, then incorporated into a 3D-printed sensor to create a self-powered, fully integrated device. These findings demonstrate that by using 3D printing, it is possible to produce multifunctional, self-powered sensors, appropriately shaped depending on the various applications, without the use of bulky batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号