首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proenkephalin (PENK) and prodynorphin (PDYN) are endogenous opioid peptides mainly produced in the striatum and, to a lesser extent, in the cerebral cortex. Dysregulated metabolism and altered cerebrospinal fluid (CSF) levels of PENK and PDYN have been described in several neurodegenerative diseases. However, no study to date investigated these peptides in the CSF of sporadic Creutzfeldt–Jakob disease (sCJD). Using liquid chromatography-multiple reaction monitoring mass spectrometry, we evaluated the CSF PDYN- and PENK-derived peptide levels in 25 controls and 63 patients with sCJD belonging to the most prevalent molecular subtypes (MM(V)1, VV2 and MV2K). One of the PENK-derived peptides was significantly decreased in each sCJD subtype compared to the controls without a difference among subtypes. Conversely, PDYN-derived peptides were selectively decreased in the CSF of sCJD MV2K, a subtype with a more widespread overall pathology compared to the sCJD MM(V)1 and the VV2 subtypes, which we confirmed by semiquantitative analysis of cortical and striatal neuronal loss and astrocytosis. In sCJD CSF PENK and PDYN were associated with CSF biomarkers of neurodegeneration but not with clinical variables and showed a poor diagnostic performance. CSF PDYN and PENK-derived peptides had no significant diagnostic and prognostic values in sCJD; however, the distinct marker levels between molecular subtypes might help to better understand the basis of phenotypic heterogeneity determined by divergent neuronal targeting.  相似文献   

2.
Although it is not yet universally accepted that all neurodegenerative diseases (NDs) are prion disorders, there is little disagreement that Alzheimer’s disease (AD), Parkinson’s disease, frontotemporal dementia (FTD), and other NDs are a consequence of protein misfolding, aggregation, and spread. This widely accepted perspective arose from the prion hypothesis, which resulted from investigations on scrapie, a common transmissible disease of sheep and goats. The prion hypothesis argued that the causative infectious agent of scrapie was a novel proteinaceous pathogen devoid of functional nucleic acids and distinct from viruses, viroids, and bacteria. At the time, it seemed impossible that an infectious agent like the one causing scrapie could replicate and exist as diverse microbiological strains without nucleic acids. However, aggregates of a misfolded host-encoded protein, designated the prion protein (PrP), were shown to be the cause of scrapie as well as Creutzfeldt–Jakob disease (CJD) and Gerstmann–Sträussler–Scheinker syndrome (GSS), which are similar NDs in humans. This review discusses historical research on diseases caused by PrP misfolding, emphasizing principles of pathogenesis that were later found to be core features of other NDs. For example, the discovery that familial prion diseases can be caused by mutations in PrP was important for understanding prion replication and disease susceptibility not only for rare PrP diseases but also for far more common NDs involving other proteins. We compare diseases caused by misfolding and aggregation of APP-derived Aβ peptides, tau, and α-synuclein with PrP prion disorders and argue for the classification of NDs caused by misfolding of these proteins as prion diseases. Deciphering the molecular pathogenesis of NDs as prion-mediated has provided new approaches for finding therapies for these intractable, invariably fatal disorders and has revolutionized the field.  相似文献   

3.
Genetic Creutzfeldt–Jakob disease (gCJD) is a subtype of genetic prion diseases (gPrDs) caused by the accumulation of mutated pathological prion proteins (PrPSc). gCJD has a phenotypic similarity with sporadic CJD (sCJD). In Japan, gCJD with a Val to Ile substitution at codon 180 (V180I-gCJD) is the most frequent gPrD, while the mutation is extremely rare in countries other than Japan and Korea. In this article, we aim to review previously elucidated clinical and biochemical features of V180I-gCJD, expecting to advance the understanding of this unique subtype in gCJD. Compared to classical sCJD, specific clinical features of V180I-gCJD include older age at onset, a relatively slow progression of dementia, and a lower positivity for developing myoclonus, cerebellar, pyramidal signs, and visual disturbance. Diffuse edematous ribboning hyperintensity of the cerebral cortex, without occipital lobes in diffusion-weighted magnetic resonance imaging, is also specific. Laboratory data reveal the low positivity of PrPSc in the cerebrospinal fluid and periodic sharp wave complexes on an electroencephalogram. Most patients with V180I-gCJD have been reported to have no family history, probably due to the older age at onset, and clinical and biochemical features indicate the specific phenotype associated with the prion protein gene mutation.  相似文献   

4.
The accumulation and aggregation of misfolded proteins in the brain, such as amyloid-β (Aβ) and hyperphosphorylated tau, is a neuropathological hallmark of Alzheimer’s disease (AD). Previously, we developed and validated a novel non-human primate model for sporadic AD (sAD) research using intracerebroventricular administration of streptozotocin (icv STZ). To date, no characterization of AD-related genes in different brain regions has been performed. Therefore, in the current study, the expression of seven amyloid precursor protein (APP) pathway-related and five tau phosphorylation-related genes was investigated by quantitative real-time PCR experiments, using two matched-pair brain samples from control and icv STZ-treated cynomolgus monkeys. The genes showed similar expression patterns within the control and icv STZ-treated groups; however, marked differences in gene expression patterns were observed between the control and icv STZ-treated groups. Remarkably, other than β-secretase (BACE1) and cyclin-dependent kinase 5 (CDK5), all the genes tested showed similar expression patterns in AD models compared to controls, with increased levels in the precuneus and occipital cortex. However, significant changes in gene expression patterns were not detected in the frontal cortex, hippocampus, or posterior cingulate. Based on these results, we conclude that APP may be cleaved via the general metabolic mechanisms of increased α- and γ-secretase levels, and that hyperphosphorylation of tau could be mediated by elevated levels of tau protein kinase, specifically in the precuneus and occipital cortex.  相似文献   

5.
Genetic Creutzfeldt–Jakob disease (gCJD) associated with the V180I mutation in the prion protein (PrP) gene (PRNP) in phase with residue 129M is the most frequent cause of gCJD in East Asia, whereas it is quite uncommon in Caucasians. We report on a gCJD patient with the rare V180I-129V haplotype, showing an unusually long duration of the disease and a characteristic pathological PrP (PrPSc) glycotype. Family members carrying the mutation were fully asymptomatic, as commonly observed with this mutation. Neuropathological examination showed a lesion pattern corresponding to that commonly reported in Japanese V180I cases with vacuolization and gliosis of the cerebral cortexes, olfactory areas, hippocampus and amygdala. PrP was deposited with a punctate, synaptic-like pattern in the cerebral cortex, amygdala and olfactory tract. Western blot analyses of proteinase-K-resistant PrP showed the characteristic two-banding pattern of V180I gCJD, composed of mono- and un-glycosylated isoforms. In line with reports on other V180I cases in the literature, Real-Time Quaking Induced Conversion (RT-QuIC) analyses did not demonstrate the presence of seeding activity in the cerebrospinal fluid and olfactory mucosa, suggesting that this haplotype also may result in a reduced seeding efficiency of the pathological PrP. Further studies are required to understand the origin, penetrance, disease phenotype and transmissibility of 180I-129V haplotype in Caucasians.  相似文献   

6.
7.
Prions are infectious agents causing prion diseases, which include Creutzfeldt–Jakob disease (CJD) in humans. Several cases have been reported to be transmitted through medical instruments that were used for preclinical CJD patients, raising public health concerns on iatrogenic transmissions of the disease. Since preclinical CJD patients are currently difficult to identify, medical instruments need to be adequately sterilized so as not to transmit the disease. In this study, we investigated the sterilizing activity of two oxidizing agents, ozone gas and vaporized hydrogen peroxide, against prions fixed on stainless steel wires using a mouse bioassay. Mice intracerebrally implanted with prion-contaminated stainless steel wires treated with ozone gas or vaporized hydrogen peroxide developed prion disease later than those implanted with control prion-contaminated stainless steel wires, indicating that ozone gas and vaporized hydrogen peroxide could reduce prion infectivity on wires. Incubation times were further elongated in mice implanted with prion-contaminated stainless steel wires treated with ozone gas-mixed vaporized hydrogen peroxide, indicating that ozone gas mixed with vaporized hydrogen peroxide reduces prions on these wires more potently than ozone gas or vaporized hydrogen peroxide. These results suggest that ozone gas mixed with vaporized hydrogen peroxide might be more useful for prion sterilization than ozone gas or vaporized hydrogen peroxide alone.  相似文献   

8.
Parkinson’s disease (PD) is a complex and progressive neurodegenerative disorder with a prevalence of approximately 0.5–1% among those aged 65–70 years. Although most of its clinical manifestations are due to a loss of dopaminergic neurons, the PD etiology is largely unknown. PD is caused by a combination of genetic and environmental factors, and the exact interplay between genes and the environment is still debated. Several biological processes have been implicated in PD, including mitochondrial or lysosomal dysfunctions, alteration in protein clearance, and neuroinflammation, but a common molecular mechanism connecting the different cellular alterations remains incompletely understood. Accumulating evidence underlines a significant role of lipids in the pathological pathways leading to PD. Beside the well-described lipid alteration in idiopathic PD, this review summarizes the several lipid alterations observed in experimental models expressing PD-related genes and suggests a possible scenario in relationship to the molecular mechanisms of neuronal toxicity. PD could be considered a lipid-induced proteinopathy, where alteration in lipid composition or metabolism could induce protein alteration—for instance, alpha-synuclein accumulation—and finally neuronal death.  相似文献   

9.
Recently, network controllability studies have proposed several frameworks for the control of large complex biological networks using a small number of life molecules. However, age-related changes in the brain have not been investigated from a controllability perspective. In this study, we compiled the gene expression profiles of four normal brain regions from individuals aged 20–99 years and generated dynamic probabilistic protein networks across their lifespan. We developed a new algorithm that efficiently identified critical proteins in probabilistic complex networks, in the context of a minimum dominating set controllability model. The results showed that the identified critical proteins were significantly enriched with well-known ageing genes collected from the GenAge database. In particular, the enrichment observed in replicative and premature senescence biological processes with critical proteins for male samples in the hippocampal region led to the identification of possible new ageing gene candidates.  相似文献   

10.
11.
Prion gene (PRNP) mutations are associated with diverse disease phenotypes, including familiar Creutzfeldt–Jakob Disease (CJD), Gerstmann–Sträussler–Scheinker disease (GSS), and fatal familial insomnia (FFI). Interestingly, PRNP mutations have been reported in patients diagnosed with Alzheimer’s disease, dementia with Lewy bodies, Parkinson’s disease, and frontotemporal dementia. In this review, we describe prion mutations in Asian countries, including Republic of Republic of Korea, China, and Japan. Clinical phenotypes and imaging data related to these mutations have also been introduced in detail. Several prion mutations are specific to Asians and have rarely been reported in countries outside Asia. For example, PRNP V180I and M232R, which are rare in other countries, are frequently detected in Republic of Korea and Japan. PRNP T188K is common in China, and E200K is significantly more common among Libyan Jews in Israel. The A117V mutation has not been detected in any Asian population, although it is commonly reported among European GSS patients. In addition, V210I or octapeptide insertion is common among European CJD patients, but relatively rare among Asian patients. The reason for these differences may be geographical or ethical isolation. In terms of clinical phenotypes, V180I, P102L, and E200K present diverse clinical symptoms with disease duration, which could be due to other genetic and environmental influences. For example, rs189305274 in the ACO1 gene may be associated with neuroprotective effects in cases of V180I mutation, leading to longer disease survival. Additional neuroprotective variants may be possible in cases featuring the E200K mutation, such as KLKB1, KARS, NRXN2, LAMA3, or CYP4X1. E219K has been suggested to modify the disease course in cases featuring the P102L mutation, as it may result in the absence of prion protein-positive plaques in tissue stained with Congo red. However, these studies analyzed only a few patients and may be too preliminary. The findings need to be verified in studies with larger sample sizes or in other populations. It would be interesting to probe additional genetic factors that cause disease progression or act as neuroprotective factors. Further studies are needed on genetic modifiers working with prions and alterations from mutations.  相似文献   

12.
13.
14.
Hypoglycemia has been recognized as a risk factor for diabetic vascular complications and cognitive decline, but the molecular mechanisms of the effect of hypoglycemia on target organs are not fully understood. In this work, gene networks of hypoglycemia and cardiovascular disease, diabetic retinopathy, diabetic nephropathy, diabetic neuropathy, cognitive decline, and Alzheimer’s disease were reconstructed using ANDSystem, a text-mining-based tool. The gene network of hypoglycemia included 141 genes and 2467 interactions. Enrichment analysis of Gene Ontology (GO) biological processes showed that the regulation of insulin secretion, glucose homeostasis, apoptosis, nitric oxide biosynthesis, and cell signaling are significantly enriched for hypoglycemia. Among the network hubs, INS, IL6, LEP, TNF, IL1B, EGFR, and FOS had the highest betweenness centrality, while GPR142, MBOAT4, SLC5A4, IGFBP6, PPY, G6PC1, SLC2A2, GYS2, GCGR, and AQP7 demonstrated the highest cross-talk specificity. Hypoglycemia-related genes were overrepresented in the gene networks of diabetic complications and comorbidity; moreover, 14 genes were mutual for all studied disorders. Eleven GO biological processes (glucose homeostasis, nitric oxide biosynthesis, smooth muscle cell proliferation, ERK1 and ERK2 cascade, etc.) were overrepresented in all reconstructed networks. The obtained results expand our understanding of the molecular mechanisms underlying the deteriorating effects of hypoglycemia in diabetes-associated vascular disease and cognitive dysfunction.  相似文献   

15.
Perinatal asphyxia is mainly a brain disease leading to the development of neurodegeneration, in which a number of peripheral lesions have been identified; however, little is known about the expression of key genes involved in amyloid production by peripheral cells, such as lymphocytes, during the development of hypoxic-ischemic encephalopathy. We analyzed the gene expression of the amyloid protein precursor, β-secretase, presenilin 1 and 2 and hypoxia-inducible factor 1-α by RT-PCR in the lymphocytes of post-asphyxia and control neonates. In all examined periods after asphyxia, decreased expression of the genes of the amyloid protein precursor, β-secretase and hypoxia-inducible factor 1-α was noted in lymphocytes. Conversely, expression of presenilin 1 and 2 genes decreased on days 1–7 and 8–14 but increased after survival for more than 15 days. We believe that the expression of presenilin genes in lymphocytes could be a potential biomarker to determine the severity of the post-asphyxia neurodegeneration or to identify the underlying factors for brain neurodegeneration and get information about the time they occurred. This appears to be the first worldwide data on the role of the presenilin 1 and 2 genes associated with Alzheimer’s disease in the dysregulation of neonatal lymphocytes after perinatal asphyxia.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号