首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Improving the ohmic contact and interfacial morphology between an electron transport layer (ETL) and perovskite film is the key to boost the efficiency of planar perovskite solar cells (PSCs). In the current work, an amorphous–crystalline heterophase tin oxide bilayer (Bi‐SnO2) ETL is prepared via a low‐temperature solution process. Compared with the amorphous SnO2 sol–gel film (SG‐SnO2) or the crystalline SnO2 nanoparticle (NP‐SnO2) counterparts, the heterophase Bi‐SnO2 ETL exhibits improved surface morphology, considerably fewer oxygen defects, and better energy band alignment with the perovskite without sacrificing the optical transmittance. The best PSC device (active area ≈ 0.09 cm2) based on a Bi‐SnO2 ETL is hysteresis‐less and achieves an outstanding power conversion efficiency of ≈20.39%, which is one of the highest efficiencies reported for SnO2‐triple cation perovskite system based on green antisolvent. More fascinatingly, large‐area PSCs (active areas of ≈3.55 cm2) based on the Bi‐SnO2 ETL also achieves an extraordinarily high efficiency of ≈14.93% with negligible hysteresis. The improved device performance of the Bi‐SnO2‐based PSC arises predominantly from the improved ohmic contact and suppressed bimolecular recombination at the ETL/perovskite interface. The tailored morphology and energy band structure of the Bi‐SnO2 has enabled the scalable fabrication of highly efficient, hysteresis‐less PSCs.  相似文献   

2.
Tin oxide (SnO2) is currently the dominating electron transport material (ETL) used in state-of-the-art perovskite solar cells (PSCs). However, there are amounts of defects distributed at the interface between ETL and perovskite to deteriorate PSC performance. Herein, a molecule bridging layer is built by incorporating 2,5-dichloroterephthalic acid (DCTPA) into the interface between the SnO2 and perovskites to achieve better energy level alignment and superior interfacial contact. The multifunctional molecular bridging layer not only can passivate the trap states of Sn dangling bonds and oxygen vacancies resulting in improved conductivity and the electron extraction of SnO2 but also can regulate the perovskite crystal growth and reduce defect-assisted nonradiative recombination due to its strong interaction with undercoordinated lead ions. As a result, the DCTPA-modified PSCs achieve champion power conversion efficiencies (PCEs) of 23.25% and 20.23% for an active area of 0.15 cm2 device and 17.52 cm2 mini-module, respectively. Moreover, the perovskite films and PSCs based on DCTPA modification show excellent long-term stability. The unencapsulated target device can maintain over 90% of the initial PCE after 1000 h under ambient air. This strategy guides design methods of molecule bridging layer at the interface between SnO2 and perovskite to improve the performance of PSCs .  相似文献   

3.
The interface energetics-modification plays an important role in improving the power conversion efficiency (PCE) among the perovskite solar cells (PSCs). Considering the low carrier mobility caused by defects in PSCs, a double-layer modification engineering strategy is adopted to introduce the “spiderman” NOBF4 (nitrosonium tetrafluoroborate) between tin dioxide (SnO2 and perovskite layers. NO+, as the interfacial bonding layer, can passivate the oxygen vacancy in SnO2, while BF4 can optimize the defects in the bulk of perovskite. This conclusion is confirmed by theoretical calculation and transmission electron microscopy (TEM). The synergistic effect of NO+ and BF4 distinctly heightens the carrier extraction efficiency, and the PCE of PSCs is 24.04% with a fill factor (FF) of 82.98% and long-term stability. This study underlines the effectiveness of multifunctional additives in improving interface contact and enhancing PCE of PSCs.  相似文献   

4.
In perovskite solar cells (PSCs), the buried interface containing high concentrations of defects is critical for efficient charge extraction toward high-performance device. Herein, porous organic cage (POC) is introduced between tin dioxide and perovskite to spontaneously reconstitute the buried interface. Through the chemical linkage formed by polydentate chelation of POC with SnO2 and perovskite, the buried interface achieves greatly reduced defect density and enhanced carrier extraction. More importantly, it is found that iodide ions in aged devices to migrate down to the electron transport layer and even invade the ITO electrode, changing the work function of ITO. This detrimental effect can be well resolved by POC since the host-guest interaction of POC can effectively suppress the iodide ions trying to migrate downward. As a result, the PSC fabricated by POC-restructured strategy yields a superior PCE of 24.13%. Moreover, the unencapsulated PSCs exhibit conspicuous improved long-term stability and retain 93% of its initial efficiency after 5000 h in ambient condition.  相似文献   

5.
Organolead halide perovskite solar cells (PSC) are arising as promising candidates for next‐generation renewable energy conversion devices. Currently, inverted PSCs typically employ expensive organic semiconductor as electron transport material and thermally deposited metal as cathode (such as Ag, Au, or Al), which are incompatible with their large‐scale production. Moreover, the use of metal cathode also limits the long‐term device stability under normal operation conditions. Herein, a novel inverted PSC employs a SnO2‐coated carbon nanotube (SnO2@CSCNT) film as cathode in both rigid and flexible substrates (substrate/NiO‐perovskite/Al2O3‐perovskite/SnO2@CSCNT‐perovskite). Inverted PSCs with SnO2@CSCNT cathode exhibit considerable enhancement in photovoltaic performance in comparison with the devices without SnO2 coating owing to the significantly reduced charge recombination. As a result, a power conversion efficiency of 14.3% can be obtained on rigid substrates while the flexible ones achieve 10.5% efficiency. More importantly, SnO2@CSCNT‐based inverted PSCs exhibit significantly improved stability compared to the standard inverted devices made with silver cathode, retaining over 88% of their original efficiencies after 550 h of full light soaking or thermal stress. The results indicate that SnO2@CSCNT is a promising cathode material for long‐term device operation and pave the way toward realistic commercialization of flexible PSCs.  相似文献   

6.
Regulating the electron transport layer (ETL) has been an effective way to promote the power conversion efficiency (PCE) of perovskite solar cells (PSCs) as well as suppress their hysteresis. Herein, the SnO2 ETL using a cost-effective modification material rubidium fluoride (RbF) is modified in two methods: 1) adding RbF into SnO2 colloidal dispersion, F and Sn have a strong interaction, confirmed via X-ray photoelectron spectra and density functional theory results, contributing to the improved electron mobility of SnO2; 2) depositing RbF at the SnO2/perovskite interface, Rb+ cations actively escape into the interstitial sites of the perovskite lattice to inhibit ions migration and reduce non-radiative recombination, which dedicates to the improved open-circuit voltage (Voc) for the PSCs with suppressed hysteresis. In addition, double-sided passivated PSCs, RbF on the SnO2 surface, and p-methoxyphenethylammonium iodide on the perovskite surface, produces an outstanding PCE of 23.38% with a Voc of 1.213 V, corresponding to an extremely small Voc deficit of 0.347 V.  相似文献   

7.
Solution‐processed triple‐cation perovskite solar cells (PSCs) rely on complex compositional engineering or delicate interfacial passivation to balance the trade‐off between cell efficiency and long‐term stability. Herein, the facile fabrication of highly efficient, stable, and hysteresis‐free tin oxide (SnO2)‐based PSCs is demonstrated with a champion cell efficiency of 20.06% using a green, halogen‐free antisolvent. The antisolvent, composed of ethyl acetate (EA) solvent and hexane (Hex) in different proportions, works exquisitely in regulating perovskite crystal growth and passivating grain boundaries, leading to the formation of a crack‐free perovskite film with enlarged grain size. The high quality perovskite film inhibits carrier recombination and substantially improves the cell efficiency, without requiring an additional enhancer/passivation layer. Furthermore, these PSCs also demonstrate remarkable long‐term stability, whereby unencapsulated cells exhibit a power conversion efficiency (PCE) retention of ≈71% after >1500 hours of storage under ambient condition. For encapsulated cells, an astounding PCE retention of >98% is recorded after >3000 hours of storage in air. Overall, this work realizes the fabrication of SnO2‐based PSCs with a performance greater or comparable to the state‐of‐the‐art PSCs produced with halogenated antisolvents. Evidently, EA–Hex antisolvent can be an extraordinary halogen‐free alternative in maximizing the performance of PSCs.  相似文献   

8.
Perovskite solar cell (PSC) has attracted great attention due to its high power conversion efficiency (PCE), low cost and solution processability. The well-designed interface and the modification of electron transport layer (ETL) are critical to the PCE and long-term stability of PSCs. In this article, a fused-ring electron acceptor is employed as the interfacial material between TiO2 and the perovskite in rigid and flexible PSCs. The modification improves the surface of TiO2, which decreases the defects of ETL surface. Moreover, the modified surface has lower hydrophilicity, and thus is beneficial to the growth of perovskite with large grain size and high quality. As a result, the interfacial charge transfer is promoted and the interfacial charge recombination can be suppressed. The highest PCE of 19.61% is achieved for the rigid PSCs after the introduction of ITIC, and the hysteresis effect is significantly reduced. Flexible PSC with ITIC obtains a PCE of 14.87%, and the device stability is greatly improved. This study provides an efficient candidate as the interfacial modifier for PSCs, which is compatible with low-temperature solution process and has a great practical potential for the commercialization of PSCs.  相似文献   

9.
Planar perovskite solar cells (PSCs) based on low‐temperature‐processed (LTP) SnO2 have demonstrated excellent photovoltaic properties duo to the high electron mobility, wide bandgap, and suitable band energy alignment of LTP SnO2. However, planar PSCs or mesoporous (mp) PSCs based on high‐temperature‐processed (HTP) SnO2 show much degraded performance. Here, a new strategy with fully HTP Mg‐doped quantum dot SnO2 as blocking layer (bl) and a quite thin SnO2 nanoparticle as mp layer are developed. The performances of both planar and mp PSCs has been greatly improved. The use of Mg‐SnO2 in planar PSCs yields a high‐stabilized power conversion efficiency (PCE) of close to 17%. The champion of mp cells exhibits hysteresis free and stable performance with a high‐stabilized PCE of 19.12%. The inclusion of thin mp SnO2 in PSCs not only plays a role of an energy bridge, facilitating electrons transfer from perovskite to SnO2 bl, but also enhances the contact area of SnO2 with perovskite absorber. Impedance analysis suggests that the thin mp layer is an “active scaffold” selectively collecting electrons from perovskite and can eliminate hysteresis and effectively suppress recombination. This is an inspiring advance toward high‐performance PSCs with HTP mp SnO2.  相似文献   

10.
Grain boundaries in lead halide perovskite films lead to increased recombination losses and decreased device stability under illumination due to defect‐mediated ion migration. The effect of a conjugated polymer additive, poly(bithiophene imide) (PBTI), is investigated in the antisolvent treatment step in the perovskite film deposition by comprehensive characterization of perovskite film properties and the performance of inverted planar perovskite solar cells (PSCs). PBTI is found to be incorporated within grain boundaries, which results in an improvement in perovskite film crystallinity and reduced defects. The successful defect passivation by PBTI yields reduces recombination losses and consequently increases power conversion efficiency (PCE). In addition, it gives rise to improved photoluminescence stability and improved PSC stability under illumination which can be attributed to reduced ion migration. The optimal devices exhibit a PCE of 20.67% compared to 18.89% of control devices without PBTI, while they retain over 70% of the initial efficiency after 600 h under 1 sun illumination compared to 56% for the control devices.  相似文献   

11.
Tri‐cation and dual‐anion mixed perovskites have been widely utilized in perovskite solar cell (PSC) applications due to their novel properties such as high absorption, high stability, and low cost. To commercialize the PSCs, further improving the device performance without detrimentally changing the device configuration is important at present. Herein, Au@SiO2 nanoparticles (NPs) are introduced to modify the interface between mesoporous TiO2 (mp‐TiO2) and mixed perovskite with increased main photovoltaic parameters of the device, resulting in a ≈29% enhancement of power conversion efficiency (PCE) from 15.8% to 20.3%. The origins of the enhancement have been studied by exploring the optical absorption, optical power distribution, and charge carrier behaviors within the system. The small perturbation transient photovoltage measurement exhibits prolonged charge carrier lifetimes after the Au@SiO2 NPs incorporation, and time of flight photoconductivity measurement shows that charge carrier mobilities of this system are also enhanced. These characteristics make metallic nanostructures a promising functional material in facile tuning of the charge carriers transport and further boosting the PCE of the PSCs.  相似文献   

12.
Organic–inorganic metal halide perovskite solar cells (PSCs) have attracted much research interest owing to their high power conversion efficiency (PCE), solution processability, and the great potential for commercialization. However, the device performance is closely related to the quality of the perovskite film and the interface properties, which cannot be easily controlled by solution processes. Here, 2D WS2 flakes with defect‐free surfaces are introduced as a template for van der Waals epitaxial growth of mixed perovskite films by solution process for the first time. The mixed perovskite films demonstrate a preferable growth along (001) direction on WS2 surfaces. In addition, the WS2/perovskite heterojunction forms a cascade energy alignment for efficient charge extraction and reduced interfacial recombination. The inverted PSCs with WS2 interlayers show high PCEs up to 21.1%, which is among the highest efficiency of inverted planar PSCs. This work demonstrates that high‐mobility 2D materials can find important applications in PSCs as well as other perovskite‐based optoelectronic devices.  相似文献   

13.
碳电极具有成本低、印刷方便、可有效隔离水氧等优点,因此有望利用碳电极材料实现低成本、高稳定性的钙钛矿太阳电池。无空穴传输层的传统碳基钙钛矿太阳电池面临着空穴提取率低、电子逆向传输,钙钛矿和碳电极界面的载流子复合等问题。文章引入聚(3-己基噻吩)(P3HT)作为器件的空穴传输层,使碳基钙钛矿太阳电池ITO/SnO2/MAPbI3/P3HT/Carbon的光伏性能得到了显著改善:器件的光电转化效率从11.16% 提高到13.37%。在氮气环境下,连续光照1000h,太阳电池的光电转化效率可保持初始值的87%,而传统器件在光照500h后,其光电转化效率已下降至初始值的60%。  相似文献   

14.
Great attention to cost‐effective high‐efficiency solar power conversion of trihalide perovskite solar cells (PSCs) has been hovering at high levels in the recent 5 years. Among PSC devices, admittedly, TiO2 is the most widely used electron transport layer (ETL); however, its low mobility which is even less than that of CH3NH3PbI3 makes it not an ideal material. In principle, SnO2 with higher electron mobility can be regarded as a positive alternative. Herein, a SnO2 nanocolloid sol with ≈3 nm in size synthesized at 60 °C was spin‐coated onto the fuorine‐doped tin oxide (FTO) glass as the ETL of planar CH3NH3PbI3 perovskite solar cells. TiCl4 treatment of SnO2‐coated FTO is found to improve crystallization and increase the surface coverage of perovskites, which plays a pivotal role in improving the power conversion efficiency (PCE). In this report, a champion efficiency of 14.69% (Jsc = 21.19 mA cm?2, Voc = 1023 mV, and FF = 0.678) is obtained with a metal mask at one sun illumination (AM 1.5G, 100 mW cm?2). Compared to the typical TiO2, the SnO2 ETL efficiently facilitates the separation and transportation of photogenerated electrons/holes from the perovskite absorber, which results in a significant enhancement of photocurrent and PCE.  相似文献   

15.
Perovskite solar cells (PSCs) are highly promising next‐generation photovoltaic devices because of the cheap raw materials, ideal band gap of ≈1.5 eV, broad absorption range, and high absorption coefficient. Although lead‐based inorganic‐organic PSC has achieved the highest power conversion efficiency (PCE) of 25.2%, the toxic nature of lead and poor stability strongly limits the commercialization. Lead‐free inorganic PSCs are potential alternatives to toxic and unstable organic‐inorganic PSCs. Particularly, double‐perovskite Cs2AgBiBr6‐based PSC has received interests for its all inorganic and lead‐free features. However, the PCE is limited by the inherent and extrinsic defects of Cs2AgBiBr6 films. Herein, an effective and facile strategy is reported for improving the PCE and stability by introducing an N719 dye interlayer, which plays multifunctional roles such as broadening the absorption spectrum, suppressing the charge carrier recombination, accelerating the hole extraction, and constructing an appropriate energy level alignment. Consequently, the optimizing cell delivers an outstanding PCE of 2.84%, much improved as compared with other Cs2AgBiBr6‐based PSCs reported so far in the literature. Moreover, the N719 interlayer greatly enhances the stability of PSCs under ambient conditions. This work highlights a useful strategy to boost the PCE and stability of lead‐free Cs2AgBiBr6‐based PSCs simultaneously, accelerating the commercialization of PSC technology.  相似文献   

16.
A graphene oxide (GO) film is functionalized with metal (Au) and metal‐oxide (MoOx) nanoparticles (NPs) as a hole‐extraction layer for high‐performance inverted planar‐heterojunction perovskite solar cells (PSCs). These NPs can increase the work function of GO, which is confirmed with X‐ray photoelectron spectra, Kelvin probe force microscopy, and ultraviolet photoelectron spectra measurements. The down‐shifts of work functions lead to a decreased level of potential energy and hence increased Voc of the PSC devices. Although the GO‐AuNP film shows rapid hole extraction and increased Voc, a Jsc improvement is not observed because of localization of the extracted holes inside the AuNP that leads to rapid charge recombination, which is confirmed with transient photoelectric measurements. The power conversion efficiency (PCE) of the GO‐AuNP device attains 14.6%, which is comparable with that of the GO‐based device (14.4%). In contrast, the rapid hole extraction from perovskite to the GO‐MoOx layer does not cause trapping of holes and delocalization of holes in the GO film accelerates rapid charge transfer to the indium tin oxide substrate; charge recombination in the perovskite/GO‐MoOx interface is hence significantly retarded. The GO‐MoOx device consequently shows significantly enhanced Voc and Jsc, for which its device performance attains PCE of 16.7% with great reproducibility and enduring stability.  相似文献   

17.
Here, highly efficient and stable monolithic (2-terminal (2T)) perovskite/PbS quantum dots (QDs) tandem solar cells are reported, where the perovskite solar cell (PSC) acts as the front cell and the PbS QDs device with a narrow bandgap acts as the back cell. Specifically, ZnO nanowires (NWs) passivated by SnO2 are employed as an electron transporting layer for PSC front cell, leading to a single cell PSC with maximum power conversion efficiency (PCE) of 22.15%, which is the most efficient NWs-based PSCs in the literature. By surface passivation of PbS QDs by CdCl2, QD devices with an improved open-circuit voltage and a PCE of 8.46% (bandgap of QDs: 0.92 eV) are achieved. After proper optimization, 2T and 4T tandem devices with stabilized PCEs of 17.1% and 21.1% are achieved, respectively, where the 2T tandem device shows the highest efficiency reported in the literature for this design. Interestingly, the 2T tandem cell shows excellent operational stability over 500 h under continuous illumination with only 6% PCE loss. More importantly, this device without any packaging depicts impressive ambient stability (almost no change) after 70 days in an environment with controlled 65% relative humidity, thanks to the superior air stability of the PbS QDs.  相似文献   

18.
Formamidinium lead triiodide (FAPbI3) has been demonstrated as the most efficient perovskite system to date, due to its excellent thermal stability and an ideal bandgap approaching the Shockley-Queisser limit. Whereas, there are intrinsic quantum confinement effects in FAPbI3, which lead to unwanted non-radiative recombination. Additionally, the black α-phase of FAPbI3 is unstable under room temperature due to the significant residual tensile stress in the film. To simultaneously address the above issues, a thermally-activated delayed fluorescence polymer P1 is designed in the study to modify the FAPbI3 film. Owing to the spectral overlap between the photoluminescence of P1 and absorption of the above-bandgap quantum wells of FAPbI3, the Förster energy transfer occurs at the P1/FAPbI3 interface, which further triggers the Dexter energy transfer within FAPbI3. The exciton “recycling” can thus be realized, which reduces the non-radiative recombination losses in perovskite solar cells (PSCs). Moreover, P1 is found to introduce compressive stress into FAPbI3, which relieves the tensile stress in perovskite. Consequently, the PSCs with P1 treatment achieve an outstanding power conversion efficiency (PCE) of 23.51%. Moreover, with the alleviation of stress in the perovskite film, flexible PSCs (f-PSCs) also deliver a high PCE of 21.40%.  相似文献   

19.
The poor interface quality between cesium lead triiodide (CsPbI3) perovskite and the electron transport layer limits the stability and efficiency of CsPbI3 perovskite solar cells (PSCs). Herein, a 4-amino-2,3,5,6-tetrafluorobenzoate cesium (ATFC) is designed as a bifacial defect passivator to tailor the perovskite/TiO2 interface. The comprehensive experiments demonstrate that ATFC can not only optimize the conductivity, electron mobility, and energy band structure of the TiO2 layer by passivation of the undercoordinated Ti4+, oxygen vacancy (VO), and free  OH defects but also promote the yield of high-quality CsPbI3 film by synergistic passivation of undercoordinated Pb2+ defects with the  CO group and F atom, and limiting I migration via F···I interaction. Benefiting from the above interactions, the ATFC-modified CsPbI3 device yields a champion power conversion efficiency (PCE) of 21.11% and an excellent open-circuit voltage (VOC) of 1.24 V. Meanwhile, the optimized CsPbI3 PSC maintains 92.74% of its initial efficiency after aging 800 h in air atmosphere, and has almost no efficiency attenuation after tracking at maximum power point for 350 h.  相似文献   

20.
Perovskite solar cells (PSCs) have received great attention due to their outstanding performance and their low processing costs. To boost their performance, one approach is to reinforce the built‐in electric field (BEF) to promote oriented carrier transport. The BEF is maximized by reinforcing the work function difference between cathode and anode (Δμ1) and increasing the work function difference between lower and upper surfaces of perovskite film (Δμ2) via introduction of electric dipole molecules, denoted as PTFCN and CF3BACl. The synergistic reinforcement of BEF improves charge transport and collection, and realizes markedly high photovoltaic performances with the best power conversion efficiency (PCE) up to 21.5%, a growth of 15.6% as compared to the control device, which is higher than the superposition of improvements achieved by either raising Δμ1 or Δμ2. Importantly, dual‐functional CF3BACl not only supplies dipole effect for tuning the surface potential of perovskite but offers hydrophobic trifluoride group toward the long‐term stable unencapsulated PSCs retaining more than 95% PCE after storing 2000 h under ambient conditions. This work demonstrates the synergistic effect of Δμ1 and Δμ2, providing an effective strategy for the further development of PSC in terms of photovoltaic conversion and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号