首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对双光子引发剂的设计合成和飞秒激光双光子聚合技术的基本原理进行了简单介绍。着重介绍了用于水凝胶双光子聚合的引发剂的研究进展,主要包括通过扩大共轭链长度、引入强供/吸电子基团、加入共引发体系等来增大双光子吸收截面,引入自由基淬灭基团以降低荧光量子产率,增加引发剂的水溶性来降低微结构细胞毒性等方面。这些研究为生物相容性三维水凝胶微纳结构的制备及应用提供了科学基础,是更好地模拟体内细胞生长微环境的必要条件。接着,介绍双光子聚合制备的水凝胶微纳结构及其在组织工程领域中的应用。最后,对生物相容性水凝胶微结构在应用中存在的问题与未来发展趋势进行总结和展望。  相似文献   

2.
Stimuli-responsive hydrogels have attracted much attention owing to the versatility of their programmed response in offering intelligent solutions for biomimicry applications, such as soft robotics, tissue engineering, and drug delivery. To achieve the complexity of biomimetic structures, two photon polymerization (2PP) has provided a means of fabricating intricate 3D structures from stimuli-responsive hydrogels. Rapid swelling hydrogel microstructures are advantageous for osmotically driven stimuli-response, where actuation speed, that is reliant on the diffusion of analytes or bioanalytes, can be optimized. Herein, the flexibility of 2PP is exploited to showcase a novel sugar-responsive, phenylboronic acid-based photoresist. This offers a remarkable solution for achieving fast response hydrogel systems that have been often hindered by the volume-dependent diffusion times of analytes to receptor sites. A phenylboronic acid-based photoresist compatible with 2PP is presented to fabricate stimuli-responsive microstructures with accelerated response times. Moreover, microstructures with programmable actuation (i.e., bending and opening) are fabricated using the same photoresist within a one-step fabrication process. By combining the flexibility of 2PP with an easily adaptable photoresist, an accessible fabrication method is showcased for sophisticated and chemo-responsive 3D hydrogel actuators.  相似文献   

3.
为了提高SU-8光刻胶的微加工分辨率,利用飞秒激光双光子聚合技术研究了SU-8光刻胶微加工时的加工工艺条件与分辨率之间的关系.实验在本研究组自主研制的纳米光子学超细微加工系统上进行,以钛蓝宝石飞秒激光器发出的780 nm波长激光作为加工光源,考察了不同激光功率与曝光时间等激光加工条件和后烤与无后烤等工艺条件对SU-8聚...  相似文献   

4.
To realize wearable displays and interactive soft robots, significant research efforts are focused on developing highly deformable alternating-current electroluminescent (ACEL) devices. Although soft emission layers are well developed, designing stretchable, conductive, and transparent soft electrodes remains challenging. In this study, ionic hydrogels are prepared comprising a double network (DN) of poly(N-hydroxyethylacrylamide-co-acrylamide)/crosslinked chitosan swollen in aqueous lithium bis(trifluoromethanesulfonyl) imide. Owing to the finely tuned DN structure of the polymeric crosslinker and transparent electrolyte, the developed ionic hydrogels exhibit remarkable stretchability (1400%), excellent optical transmittance (>99%), and high conductivity (1.95 × 10−2 Sm−1). Based on the high performance of the ionic hydrogels, ACEL devices are fabricated with an emission layer containing phosphor microparticles and demonstrate stable, high luminance under extreme deformation, and ultra-high elongation. The excellent transparency of the ionic hydrogel further enables the fabrication of novel soft ACEL devices with tandem structures by stacking several emission and electrode layers, in which each emission layer is independently controlled with a switch circuit.  相似文献   

5.
Due to polymer’s excellent flexibility, transparency, reliability and light weight, it is a good candidate material for substrate of devices including organic electronic devices, biomedical devices, and flexible displays (LCD and OLED). In order to build such devices on polymer, nano- to micron-sized patterning must be accomplished. Since polymer materials reacts with organic solvents or developer solutions which are inevitably used in photolithography and cannot bear high temperature (∼140 °C) process for photoresist baking, conventional photolithography cannot be used to polymer substrate. In this research, monomer based thermal curing imprinting lithography was used to make as small as 100 nm dense line and space patterns on flexible PET (polyethylene-terephthalate) film. Compared to hot embossing lithography, monomer based thermal curing imprint lithography uses monomer based imprint resin which consists of base monomer and thermal initiator. Since it is liquid phase at room temperature and polymerization can be initiated at 85 °C, which is much lower than glass temperature of polymer resin, the pattern transfer can be done at much lower temperature and pressure. Hence, patterns as small as 100 nm were successfully fabricated on flexible PET film substrate by monomer based thermal curing imprinting lithography at 85 °C and 5 atm without any noticeable degradation of PET substrate.  相似文献   

6.
In this work, a two-photon polymerization (2PP) processing device was built using the femtosecond laser, and femtosecond laser direct writing was performed on SU-8 photoresist. Due to the 2PP effect of the photoresist caused by the femtosecond laser, the polymeric line with size less than the focal spot size is obtained. Based on the Raman spectroscopy characterization of SU-8 polymer before and after 2PP, we research the dynamic process of femtosecond laser induced 2PP. In Raman spectra, some scattering peaks with large intensity variation, such as 1 108 cm-1 and 1 183 cm-1, indicate that the asymmetric stretching vibration of C-O-C bond in SU-8 polymer is increased. By comparison, we can find that 2PP only affects the light absorption of initiator, but does not affect the monomer polymerization. It is helpful to understand the interaction of photoresist and femtosecond laser, and plays an important role in quantitatively controlling the polymerization degree of SU-8 polymer and improving the processing resolution of 2PP. This work has been supported by the National Basic Research Program of China (No.2010CB934101), and the National Natural Science Foundation of China (No.11404173) E-mail:nkwangzh@nankai.edu.cn   相似文献   

7.
孙树峰  王萍萍 《红外与激光工程》2018,47(12):1206009-1206009(5)
针对微/纳机电系统(MEMS/NEMS)零部件加工制造难题,研究具有亚衍射极限空间分辨率的飞秒激光双光子聚合加工方法,搭建钛蓝宝石飞秒激光微纳加工系统,对液态聚合物材料进行飞秒激光双光子聚合加工工艺试验研究。结果表明:随着激光功率的降低,单个固化点的尺寸减小,加工分辨率提高;扫描步距减小,所加工工件的表面粗糙度数值减小,但加工效率降低。基于CAD软件设计出微米墙和纳米线构成的三维微纳结构,利用飞秒激光双光子聚合加工得到该三维微纳结构实物,通过优化工艺参数加工出直径小于100 nm的纳米线,从而证明飞秒激光双光子聚合加工方法为微/纳器件的制造提供了一种有效方法。  相似文献   

8.
Two molecules based on triptycene and perylene diimide (PDI) were designed and synthesized as non-fullerene acceptors for organic solar cells (OSCs). The bay-substituted and the imide-substituted molecules, named as TPBA and TPI, respectively, have rigid three-dimensional backbones, which improved the morphological compatibility with the donor polymers. TPBA and TPI exhibit suitable energy levels as acceptors and efficient absorption in the range of 450–600 nm. Their blended films with PTB7-Th displayed power conversion efficiencies of 2.80% and 3.64%, respectively.  相似文献   

9.
顾银炜  陈达  李久荣  董建峰  王琴  王刚  陶卫东 《红外与激光工程》2018,47(10):1006006-1006006(7)
通过将水溶性石墨烯掺入至光引发剂2-苄基-2-二甲基氨基-1-(4-吗啉苯基)丁酮和季戊四醇三丙烯酸酯混合而成的光刻胶中,利用飞秒激光双光子聚合技术制作一系列平面图案及三维立体结构。利用亲水角测试表征混合物的浸润性,激光透过深度测试表征混合物的穿透性。实验结果证明,掺杂有水溶性石墨烯的混合液与玻璃仍具有较强结合力和一定激光穿透性。最后利用拉曼成像与扫描电子显微镜表征平面图案及三维结构。证实使用去离子水作为分散液可以将水溶性石墨烯掺杂进微结构中,并且掺杂有水溶性石墨烯的微结构在机械性能上比纯光刻胶微结构,结构更稳定且形貌更统一。  相似文献   

10.
Biomimicking organ phantoms with vivid biological structures and soft and slippery features are essential for in vitro biomedical applications yet remain hither to unmet challenges in their fabrication such as balancing between spatial structural complexity and matchable mechanical properties. Herein, 3D printable tissue-mimicking elastomeric double network hydrogels with tailorable stiffness are evolved to idiosyncratically match diverse biological soft tissues by regulating the compositions of hydrogel matrix and the density of metal coordination bonds. Relying on digital light processing 3D printing, various mechanically tunable biomimetic volumetric hydrogel organ constructs with structural complexity and fidelity, including kidney, brain, heart, liver, stomach, lung, trachea, intestine, and even the intricate vascularized tissues, are fabricated faultlessly. Proof-of-concept 3D printed hydrogel heart and liver phantoms provide sophisticated internal channels and cavity structures and external realistic anatomical architectures that more closely mimic native organs. For the in vitro application demonstration, a 3D printed hydrogel brain phantom with tortuous cerebral arteries and slippery characters serves as an effective neurosurgical training platform for realistic simulation of endovascular interventions. This platform offers a means to construct mechanically precisely tunable hydrogel-based biomimetic organ phantoms that are expected to be used in surgical training, medical device testing, and organs-on-chips.  相似文献   

11.
Systematic tuning of chemical and physical structure allows fine control over desired electronic and optical properties, including those of conjugated polymer semiconductors. In the case of physical structure, orientation via liquid crystalline alignment allows access to fundamental optical anisotropies and the associated refractive index modification offers great potential for fabrication of photonic structures. In this paper, photoalignment is used to orient the liquid crystalline conjugated polymer poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT), specifically involving two-photon infrared laser writing of patterns in an azobenzene sulphonic dye (SD1). These patterns are transferred into the overlying film by thermotropic orientation in the nematic melt, then frozen in place by quenching to a room temperature nematic glass. Optimization of laser power and scan speed allows features with linewidths ≤ 1 µm. Photoluminescence (PL) peak anisotropy values reach PLII/PL = 13 for laser writing, compared with PLII/PL = 9 for polarized ultraviolet light emitting diode exposure of the same SD1 layer. These two approaches also result in different film microstructures; evidenced by characteristic changes in PL spectra. The anisotropic PL spectra provide information on emissive excited states that complements previous studies on non-oriented F8BT and related copolymers, also suggesting two emissive states.  相似文献   

12.
4D printing has emerged as an important technique for fabricating 3D objects from programmable materials capable of time-dependent reshaping. In the present investigation, novel 4D thermoinks composed of laponite (LAP), an interpenetrating network of poly(N-isopropylacrylamide) (PNIPAAm), and alginate (ALG) are developed for direct printing of shape-morphing structures. This approach consists of the design and fabrication of 3D honeycomb-patterned hydrogel discs self-rolling into tubular constructs under the stimulus of temperature. The shape morphing behavior of hydrogels is due to shear-induced anisotropy generated via 3D printing. The compositionally tunable hydrogel discs can be programmed to exhibit different actuation behaviors at different temperatures. Upon immersion in 12 °C water, singly crosslinked sheets roll up into a tubular construct. When transferred to 42 °C water, the tubes first rapidly unfold and then slightly curve up in the opposite direction. Through a dual photocrosslinking of PNIPAAm, it is possible to inverse temperature-dependent shape morphing and induce self-folding at higher and unrolling at lower temperatures. The extensive self-assembling motion is essential to developing thermal actuators with broad applications in, e.g., soft robotics and active implantology, whereas controllable self-rolling of planar hydrogels is of the highest interest to biomedical engineering as it allows for effective fabrication of hollow tubes.  相似文献   

13.
This study investigates the influence of processing parameters when applying direct laser interference patterning (DLIP) on the morphology and microstructure of zirconia surfaces using a 10 ps-pulsed laser source with 1064 nm wavelength. An experimental testing matrix is built with different values of laser fluence (5.7 – 18.2 J cm−2) and pulse overlap (66 – 98%). Surface morphology and microstructure are characterized by confocal microscopy and scanning electron microscopy. Homogeneous line-like patterns with periodic spatial repetition of 5.0 µm, with varying depths, widths, and aspect ratio, are fabricated using proper processing parameters (5.7 – 7.6 J cm−2 and 92 – 96%). Structures with maximum depth of 1.5 µm and sharp edges are obtained (7.6 J cm−2 and 96% overlap). Ablated regions presented a morphology typical of photophysical ablation mechanism, with signs of molten material at the surface. Sub-micrometric pores and nanodroplets are registered for all conditions, while sub-micrometric cracks developed only for higher fluences. A processing window conducing to homogenous DLIP structures is set based on experimental data. Periodic structures with multiscale topographic features are successfully obtained on zirconia surfaces using DLIP technology in this study. These outcomes open new perspectives for fabrication of multifunctional zirconia surfaces for advanced biomedical and engineering applications.  相似文献   

14.
Smart textiles with good mechanical adaptability play an important role in personal protection, health monitoring, and aerospace applications. However, most of the reported thermally responsive polymers has long response time and poor processability, comfort, and wearability. Skin-core structures of thermally responsive fibers with multiple commercial fiber cores and temperature-responsive hydrogel skins are designed and fabricated, which exhibit rapid mechanical adaptability, good thermohardening, and thermal insulation. This universal method enables tight bonding between various commercial fiber cores and hydrogel skins via specific covalently anchored networks. At room temperature, prepared fibers show softness, flexibility, and skin compatibility similar to those of ordinary fibers. As temperature rises, smart fibers become hard, rigid, and self-supporting. The modulus of hydrogel skin increases from 304% to 30883%, showing good mechanoadaptability and impact resistance owing to the synergy between hydrophobic interactions and ionic bonding. Moreover, this synergistic effect leads to an increase in heat absorption, and fibers exhibit good thermal insulation, which reduces the contact temperature of the body surface by ≈25 °C under the external temperature of 95 °C, effectively preventing thermal burns. Notably, the active mechanoadaptability of these smart fibers using conductive fibers as cores is demonstrated. This study provides feasibility for fabricating environmentally adaptive intelligent textiles.  相似文献   

15.
Polyarylene ether nitrile (PEN)/barium titanate (BT) nanocomposite films were successfully prepared by a continuous ultrasonic dispersion fabrication process, and an optimized process route was established through the investigations. Scanning electron microscopy (SEM) showed that BT nanoparticles with diameters less than 100 nm were well dispersed in the polymer matrix. The PEN/BT nanocomposite films exhibited excellent dielectric properties, without sacrificing tensile strength or thermal stability, when compared with those of pristine polymer. Furthermore, the nanocomposite films were found to have good flexibility; they could be curled as easily as pure PEN films.  相似文献   

16.
Precise fabrication of microscale vasculatures (MSVs) has long been an unresolved challenge in tissue engineering. Currently, light-assisted printing is the most common approach. However, this approach is often associated with an intricate fabrication process, high cost, and a requirement for specific photoresponsive materials. Here, thermoresponsive hydrogels are employed to induce volume shrinkage at 37 °C, which allows for MSV engineering without complex protocols. The thermoresponsive hydrogel consists of thermosensitive poly(N-isopropylacrylamide) and biocompatible gelatin methacrylate (GelMA). In cell culture, the thermoresponsive hydrogel exhibits an apparent volume shrinkage and effectively triggers the creation of MSVs with smaller size. The results show that a higher concentration of GelMA blocks the shrinkage, and the thermoresponsive hydrogel demonstrates different behaviors in water and air at 37 °C. The MSVs can be effectively fabricated using the sacrificial alginate fibers, and the minimum MSV diameter achieved is 50 µm. Human umbilical vein endothelial cells form endothelial monolayers in the MSVs. Osteosarcoma cells maintain high viability in the thermoresponsive hydrogel, and the in vivo experiment shows that the MSVs provide a site for the perfusion of host vessels. This technique may help in the development of a facile method for fabricating MSVs and demonstrates strong potential for clinical application in tissue regeneration.  相似文献   

17.
A tip-shaped zinc ion solid-state sensor is made by two parallel optical fibers embedded closely in a sensing hydrogel film. The film is made of poly(2-hydroxyethyl methacrylate) (poly HEMA)hydrogel mixed with the selective fluorescent probe meso-2,6-Dichlorophenyltripyrrinone (TPN-Cl2) with weight ratio of 0.025 wt%. A 405 nm laser output is sent from one fiber and the 622 nm fluorescence of the doped hydrogel is collected by the second fiber. Each fiber diameter is 370 μm (core is 300 μm), whose sum is roughly the tip diameter. The 0.4 cm by 0.5 cm tip has real-time response for zinc ion concentration over 10−6 M, with marginal signal for 10−7 M. The tip is inserted inside an oyster and successfully detects the zinc ions, showing that the sensor works in complex body fluid and tolerates certain mechanical stress. To show the potential application for medicine, the sensing film is applied for primary neuronal cultures. We report for the first time zinc ions release at concentration levels 10−6–10−7 M to the medium under stress conditions of ischemia, inflammation, and intoxication. Furthermore, this correlates with the zinc levels detected by biochemical assay. Such sensing tip has great potential for biomedical monitoring ex vivo or in vivo.  相似文献   

18.
分布反馈(DFB)光栅的制作是半导体激光器芯片的关键工艺,通过纳米压印技术在InP基片表面涂覆的光刻胶上压印出DFB光栅图形,并分别通过湿法腐蚀和干法刻蚀技术将光栅图形转移到InP基片上。所制作的DFB光栅周期为240nm(对应于1 550nm波长的DFB激光器),光栅中间具有λ/4相移结构。采用纳米压印技术制作的DFB光栅相对于通常双光束干涉法制作的光栅具有更好的均匀性以及更低的线条粗糙度,而且解决了双光束干涉法无法制作非均匀光栅的技术难题。相对于电子束直写光刻法,采用纳米压印技术制作DFB光栅具有快速与低成本的优势。采用纳米压印技术在InP基片上成功制作具有相移结构的DFB光栅,为进一步进行低成本高性能的半导体激光器芯片的制作奠定了良好基础。  相似文献   

19.
In this paper we introduce a fabrication process for polymer rib waveguides that uses UV-imprint lithography. In the structure of an inverted-rib waveguide, the lower cladding of the waveguide is patterned by UV-imprinting and the waveguiding layer is subsequently spin-coated. That makes the thickness of the formed slab layer on the rib waveguide controllable by tuning the spin-coating parameters. The fabrication process utilizes two steps of UV-imprinting. The first one is to form a rigid polymer mold from positive tone photoresist. The second one is to pattern the waveguide lower cladding with the formed polymer mold. Through the two steps of UV-imprinting, rib waveguides can be fabricated without an etching procedure. We demonstrated the proposed fabrication process by fabricating 2-μm-wide waveguides operating in single mode at 1310 nm. With TE-polarized light, the fabricated waveguides show an average transmission of 58.6% in a 30 mm long waveguide, corresponding to a loss of 2.3 dB.  相似文献   

20.
Herein, a low threshold, wavelength-tunable, compact, two-photon pumped upconversion laser is presented. The surface emitting lasers are composed of melt-processed 1,4-bis[2-[4-[N,N-di(p-totyl)amino]phenyl]vinyl]benzene (DADSB) as active media and two designed distributed bragg reflectors. The melting fabrication process is very simple, and the lasing threshold is as low as 150 μJ cm?2 pulse?1, when pumped by a Ti:sapphire amplifier operating at 800 nm with a 150 fs pulse width. To the best of our knowledge, it is one of the lowest values for two-photon lasers. Lasing from multimode to single-mode oscillation is demonstrated. Tunable single mode oscillation was obtained at wavelength from 514 nm to 523 nm with a spectral width of less than 0.2 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号