首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
菲涅尔区多点聚焦已成为一种应用广泛的电磁能量聚合方法。然而,多点聚焦的能量传输效率受无线环境特别是非视距(Non-Line of Sight,NLOS)环境的影响较大。针对该问题,首先研究了可编程超表面的功能模型,在此基础上,提出一种基于可编程超表面的菲涅尔区全息多点聚焦方法;然后,针对该方法中的超表面结构单元、可编程超表面及其聚焦和准直特性进行了仿真分析。仿真结果表明,在相同的NLOS环境下,不采用可编程超表面的方法传输效率不高于5%;而所提方法允许针对不同无线设备以最适宜的方式进行电磁传播规律的编程定制,最高具有近60%的传播效率。因此,所提方法能够有效突破NLOS环境的限制,大大提高菲涅尔区多点聚焦的传输效率,有望应用在医疗超声、光学成像、无线能量传输、新一代移动通信等多个领域。  相似文献   

2.
An isotropic electromagnetic (EM) lens based on Huygens' metasurface is proposed for 28.0 GHz lens antenna design. The lens consists of a series of non-resonant and subwavelength metallic patterns etched on both sides of an ultrathin dielectric substrate. Both electric and magnetic responses are introduced to realize desired abrupt phase change and high-efficiency transmission for the secondary wavelets in the incident wavefront. Then, a substrate-integrated waveguide (SIW) fed patch antenna is combined with the lens as the primary feed to form a low-profile lens antenna system. The simulated and measured results coincide with each other, and demonstrate that the prototype realizes 8.8 dB~12.6 dB gain increment and low side-lobe levels over the bandwidth of 26.7 GHz~30.0 GHz. The novel design leads to a low-profile, light weight, and low-cost antenna solution in a wireless communication system.  相似文献   

3.
In the emerging Internet of Things, stretchable antennas can facilitate wireless communication between wearable and mobile electronic devices around the body. The proliferation of wireless devices transmitting near the human body also raises interference and safety concerns that demand stretchable materials capable of shielding electromagnetic interference (EMI). Here, an ultrastretchable conductor is fabricated by depositing a crumple‐textured coating composed of 2D Ti3C2Tx nanosheets (MXene) and single‐walled carbon nanotubes (SWNTs) onto latex, which can be fashioned into high‐performance wearable antennas and EMI shields. The resulting MXene‐SWNT (S‐MXene)/latex devices are able to sustain up to an 800% areal strain and exhibit strain‐insensitive resistance profiles during a 500‐cycle fatigue test. A single layer of stretchable S‐MXene conductors demonstrate a strain‐invariant EMI shielding performance of ≈30 dB up to 800% areal strain, and the shielding performance is further improved to ≈47 and ≈52 dB by stacking 5 and 10 layers of S‐MXene conductors, respectively. Additionally, a stretchable S‐MXene dipole antenna is fabricated, which can be uniaxially stretched to 150% with unaffected reflected power <0.1%. By integrating S‐MXene EMI shields with stretchable S‐MXene antennas, a wearable wireless system is finally demonstrated that provides mechanically stable wireless transmission while attenuating EM absorption by the human body.  相似文献   

4.
郭旭岳  李冰洁  樊鑫豪  钟进展  刘圣  魏冰妍  李鹏  赵建林 《红外与激光工程》2020,49(9):20201031-1-20201031-10
超表面作为一种人工设计的二维阵列纳米结构,能够在亚波长尺度上实现光场波前振幅、相位和偏振态的灵活调控,为现代光学器件的小型化、集成化提供了全新的实现途径。随着光学成像、显示等应用的发展,在可见光波段具有高工作效率的微型光学器件的需求日益凸显。近年来,由高折射率、低损耗电介质材料制备的光学超表面得到了极大地发展,在消色差光学超透镜、偏振相关全息显示等方面展现出广泛的应用前景。文中围绕电介质超表面的相关研究,首先介绍广义斯涅耳定律及电介质超表面结构调控光场振幅、相位和偏振态的基本原理,在此基础上,重点回顾近年来关于光场波前单一参量调控和多参量联合调控在全息显示、结构光场产生等方面的研究进展,最后讨论电介质超表面发展的可能挑战与前景。  相似文献   

5.
夏雨  王毅  曹群生 《微波学报》2021,37(5):68-72
为了提高微波无线能量传输的效率以及灵活性,提出并设计实现了一款基于机械控制的可重构超表面电磁开关。该设计基于Pancharatnam-Berry(P-B)相位原理,是一种可机械旋转、具有波束控制能力的反射型超表面,可以直接应用于无线传输系统中。仿真与优化设计表明,对于垂直入射的右旋圆极化平面波,超表面能够实现同极化聚焦或散射两种可重构功能。将该超表面放在无线传输系统中的发射端可以形成反射面天线,从而对微波无线功率传输系统实现电磁开关的功能。实验结果表明,在设计的5.8 GHz 附近,发射天线位于超表面焦点处时,通过调节超表面实现聚焦功能,可以使天线增益提高2.7 dBi;在无线传输系统中,可以通过超表面的引入实现电磁开关的功能。  相似文献   

6.
Microwave-driven strategy shows many advantages including selective energization, uniform heating, and high penetration depth, which is a hot topic in wireless actuators. Understanding microwave stimulus-response mechanisms is the key to developing universal construction strategies for advanced microwave-driven actuators. Herein, reduced graphene oxide (rGO) with specified dielectric genes and thermal properties is implanted into the shape memory polymer, liquid crystal elastomer (LCE) as an example, to construct soft, reversible, and sensitive microwave actuators. Based on the analysis of microstructure and dielectric properties, LCE-rGO composites exhibit excellent polarization relaxation-dominated dielectric loss and electromagnetic (EM) energy conversion ability. The maximum dielectric loss factor (ε″) and loss tangent (tan δe) of LCE-rGO are dramatically increased by 216% and 87.5% compared to pure LCE, respectively, and the optimum apparent energy harvest efficiency is 19.4 times higher than that of LCE. In addition, the implantation of rGO significantly lowers the microwave actuation threshold of LCE-rGO composites and reinforces their stimulus-response capacity. Response time under 750 W microwave irradiation of LCE-rGO is shortened to <10s. These findings can provide a solid basis for the design and fabrication of highly efficient microwave stimuli-responsive polymers and enlighten a new approach to wireless actuated smart devices.  相似文献   

7.
An implementation of an implantable sensing biosystem composes of a readout circuit, a power management block, an embedded microcontroller unit (MCU), an implantable drug delivery section and a wireless uplink transceiver system. This paper describes a bi-directional wireless transceiver system for implantable sensing systems. The transceiver system is composed of an external and implantable transceiver, communicating through an inductive link. Half duplex communication between transceivers at a 10 Kbps data rate was achieved at a maximum distance of 4 cm. Command and data will be supplied to the implantable module by radio frequency (RF) telemetry utilizing an amplitude shift keying (ASK) modulated 2 MHz carrier frequency. A capacitor-less amplitude demodulation receiver architecture was produced in the research with implantable receiver core area measuring at 113.2 μm by 171.8 μm with average power dissipation at 815.1 μW at a 3.3 V single rail power supply. An active uplink transceiver utilizing load shift keying (LSK) as backward data telemetry was designed. Implantable transmitter core area measures 251.7 μm by 139.3 μm, consuming 103.62 mW while driving an RF ferrite core antenna at maximum reading range. Integrating both circuits, implantable transceiver, measuring 355.3 μm by 171.8 μm, was designed and implemented using TSMC 0.35 μm mixed-signal 2P4M 3.3 V standard CMOS process. The integrated circuit solution addressed solutions for many of the problems associated with implanted devices and introduces circuits which improve in several ways over previously published designs, in functionality and integration level. In addition to being fully integrated in plain CMOS technology, not relying at least partly on available specialized elements and expensive technologies, these building blocks improve on previous designs in performance and/or power consumption. This work succeeded in implementing building blocks for an implantable transceiver, which depends only on the absolute minimum off-chip components. A complete implantable chip is presented, which highlight the design tradeoffs and optimizations applied to the design of CMOS implantable system chips.  相似文献   

8.
《Microelectronics Journal》2015,46(8):685-689
A novel low-complexity ultra-wideband UWB receiver is proposed for short-range wireless transmission communications without considering multipath effect. The receiver chip uses a low-complexity UWB non-coherent receiving system solution with the core module composed of squarer and low-pass filter. By introducing asymmetric gate series inductance and RCL parallel negative feedback loop into the two-stage push–pull amplifier, the low-noise amplification and input impedance matching at ultra-wide bandwidth were achieved. With only two inductors and self-biased function, the chip area and power consumption can be saved largely. The proposed UWB receiver chip was fabricated in a 0.18 μm RF CMOS technology. Experimental results show that it can achieve a bandwidth of 3–5 GHz, maximum receiving symbol rate of 250 Mbps, receiving sensitivity of −80 dBm and power consumption of 36 mW, providing a low-complexity and high-speed physical implementation of the short-range high-speed wireless interconnection between electronic devices in the future.  相似文献   

9.
At present, multiple input multiple output radars offer accurate target detection and better target parameter estimation with higher resolution in high-speed wireless communication systems. This study focuses primarily on power allocation to improve the performance of radars owing to the sparsity of targets in the spatial velocity domain. First, the radars are clustered using the kernel fuzzy C-means algorithm. Next, cooperative and noncooperative clusters are extracted based on the distance measured using the kernel fuzzy C-means algorithm. The power is allocated to cooperative clusters using the Pareto optimality particle swarm optimization algorithm. In addition, the Nash equilibrium particle swarm optimization algorithm is used for allocating power in the noncooperative clusters. The process of allocating power to cooperative and noncooperative clusters reduces the overall transmission power of the radars. In the experimental section, the proposed method obtained the power consumption of 0.014 to 0.0119 at K = 2, M = 3 and K = 2, M = 3, which is better compared to the existing methodologies—generalized Nash game and cooperative and noncooperative game theory.  相似文献   

10.
设计了一种中心对称的分裂环形状超表面结构,该结构具有偏振不敏感和高品质因子的特性。通过理论和实验研究,深入分析了其谐振点的频谱特性,并确定了谐振峰的模式,包括LC、偶极和高阶谐振等。其中,几种高阶谐振模式表现出较高的高品质因数Q(约230),并且对超表面衬底材料的介电常数变化高度敏感。此外,还研究了具有不对称超表面结构的电磁性质,发现通过分别增加超表面结构沿水平轴(x轴)和垂直轴(y轴)的不对称性,可以产生和增强0.332 THz和0.210 THz的谐振。  相似文献   

11.
Manipulating the phase, polarization, and energy distribution of electromagnetic (EM) waves has facilitated numerous applications. Nowadays, metasurface provides an innovational scenario to carry out more promising and advanced control of EM waves. However, it is a great challenge to manipulate polarization, phase, and energy distribution simultaneously with a low profile. Herein, a class of single-layer radiation-type metasurfaces to achieve advanced EM manipulation is proposed. Desired EM functions can be achieved based on the geometric phase and resonant phase. Such metasurfaces enable the capability to manipulate arbitrary phases and linear polarization states simultaneously. Moreover, arbitrary energy distributions can be controlled. As examples of potential applications, three advanced EM functional devices are presented: a novel multiple-input multiple-output antenna with efficient crosstalk suppression and information encryption, an energy-controllable router, and a metasurface holographic imaging based on power transmission algorithm, respectively. The proposed strategy may open up an alternative way of controlling EM waves with advanced performance and minimalist complexity. Moreover, it may lead to advances in information encoding and cryptography.  相似文献   

12.
Nitride storage non-volatile memories with hafnium silicate (HfSiOx) blocking dielectric and titanium nitride (TiN) metal gate aimed at low power embedded applications beyond the 45 nm node, have been fabricated and investigated. In addition to presenting the typical figures of merit of flash memories, the scalability of the devices has been assessed. We have also investigated the physical origin of the observed memory features.  相似文献   

13.
As an alternative to conventional wireless communication techniques that use amplitude, frequency, and phase modulations, polarization modulation (PoM) provides an additional degree of freedom for the modulation of carrier waves and allows the realization of simple transceiver designs. PoM also enhances physical-layer security in wireless communication systems owing to its vector-attribute and direction-dependence features. In this study, a prototype of PoM wireless communications based on a digital coding metasurface that can dynamically control the polarization of electromagnetic waves in a certain frequency band is demonstrated. The binary digital signals can be encoded on the optical rotation states of the circularly polarized beams through the real-time control of the bias voltages applied on the metasurface and successfully decoded at the receiving end. Because the metasurface is separated from the emitting antenna, the design can simplify the setup for multichannel communications and provide more flexibility by setting the emitting antennas at different operating frequencies at any time.  相似文献   

14.
Thin HfTiO gate dielectric is deposited by reactive co-sputtering method followed by wet or dry N2 anneal. The effects of Ti content on the performance of HfTiO gate dielectric are investigated by using different sputtering powers for the Ti target. Experimental results indicate that as the Ti content increases, the dielectric constant (κ) can increase up to 40 for a Ti content of 28%. However, when the Ti content is too high, the interface properties and gate leakage properties are deteriorated. On the contrary, results show that owing to the hydrolyzable property of GeOx, the wet-N2 anneal can greatly suppress the growth of unstable low-κ GeOx interlayer, resulting in lower interface-state density and gate leakage current, in addition to larger κ value. In this study, when the sputtering power of the Ti target is 80 W together with a 25-W power for the Hf target and a post-deposition anneal (PDA) in wet-N2 ambient at 500 °C for 300 s, excellent device performance is achieved: equivalent oxide thickness of 0.72 nm, equivalent dielectric constant of 39, interface-state density of 6.5 × 1011 eV−1 cm−2 and gate leakage current of 5.7 × 10−4 A/cm2 at Vg = 1 V. Therefore, in order to obtain high-quality HfTiO gate dielectric for small-scaled Ge MOS devices, not only should the Ti content be optimized, the PDA should also be done in a wet-N2 ambient.  相似文献   

15.
Recent advances in wearable devices have enabled noninvasive monitoring for healthcare applications. Smart contact lenses have gained substantial attention for medical diagnosis through the analysis of vital signs in tear fluids. However, previous studies have mostly focused on designs embedded with electronic devices or antennas for wireless transmission, which are power-intensive and require external receivers around the ocular system. Here, the study reports a power-free smart contact lens for noninvasive glucose sensing according to the color changes of multiple electrochromic electrodes to achieve direct data transmission without the external wireless system. The device detects various glucose concentrations, from the ordinary range (0.16–0.5 mm ) to abnormally high concentrations (0.9 mm ). The multi-electrode design exhibits acceptable accuracy, with a correlation coefficient r = 0.99543 to the controlled sample and allowed low-glucose detections with concentrations down to 0.05 mm . The device shows good reproducibility, with standard deviations of determined glucose levels of 0.0462 and 0.025 for four continuous cycles and for an interval of several days, respectively. It is believed that the reported smart contact lens has the potential for daily health monitoring by ordinary users without a power supply and external devices. Its simple electronics-free structure will allow for immediate application to the market with cost-effective manufacturing.  相似文献   

16.
《Microelectronics Journal》2014,45(12):1595-1602
Current clinical neural recording methods which employ wired connections to the external world can be improved by eliminating the wires thanks to integrated circuit and microsystems technology. This study presents design and implementation of such a system which performs wireless power transfer and data transmission for intracranial epilepsy monitoring. Proposed system provides power to the implant by inductive coupling. Full-duplex communication is also performed at the same frequency as the power transfer. Consequently, a system which can transfer power from 10 mm distance with 30% efficiency has been realized. The system supports 400 kbps uplink communication while downlink communication is performed with 1 kbps at the same time. Design challenges for uplink communication in terms of energy-per-bit and interaction between uplink and downlink communication have been discussed in detail to give an insight about the design trade-offs for a full-duplex communication system superposed on a wireless power transfer link.  相似文献   

17.
During the past decades, research has progressed on the biomedical implantable electronic devices that require power and data communication through wireless inductive links. In this paper, we present a fully integrated binary phase-shift keying (BPSK) demodulator, which is based on a hard-limited COSTAS loop topology, dedicated to such implantable medical devices. The experimental results of the proposed demodulator show a data transmission rate of 1.12 Mbps, less than 0.7 mW consumption under a supply voltage of 1.8 V, and silicon area of 0.2 mm/sup 2/ in the Taiwan Semiconductor Manufacturing Company (TSMC) CMOS 0.18-/spl mu/m technology. The transmitter satisfies the requirement of applications relative to high forward-transferring data rate, such as cortical stimulation. Moreover, the employment of BPSK demodulation along with a passive modulation method allows full-duplex data communication between an external controller and the implantable device, which may improve the controllability and observability of the overall implanted system.  相似文献   

18.

In this paper, dual-band wearable microstrip patch antenna printed on FR4-substrate is designed and fabricated for wearable wireless communications. A star-shaped monopole Ω antenna connected to 50 Ω transmission line, backed by partial ground plane is used. The antenna dimensions are optimized for wideband radiation characteristics. Different types of dielectric substrates are investigated for wideband wearable applications. The proposed antenna printed on jeans textile substrate introduces an impedance matching bandwidth of 7.3 GHz with maximum gain of 5 dBi. The effect of mutual coupling between two parallel patches, two opposite patches and two orthogonal patches on their radiation characteristics are investigated. High isolation is achieved for two orthogonal patches placed away from each other by 0.3λ with a rectangular strip etched between them and cutting in the ground plane. The isolation is below ? 29 dB within the frequency band. The structure achieves impedance matching bandwidth of 1.8 GHz in 1st-band and 4.8 GHz in 2nd-band with maximum gains of 8.5 dBi and 5.3 dBi, respectively. A prototype element is fabricated, measured and the radiation characteristics coincide with the simulated results. The structure is simple, light-weight, and is suitable for WAN applications in the frequency band from 2 GHz to 7 GHz. The effect of human body tissue on the radiation characteristics of the antenna array is investigated. 

  相似文献   

19.
该文提出了一种时变极化编码超构表面的设计方法,实现了对电磁波基波与谐波分布的非线性调控。通过加载开关二极管的方式,超构表面可在2.4 GHz频率处实现转极化与同极化反射之间的动态切换,进而通过调节时域方波调制信号的占空比和频率,可在频域内调控电磁波基波与谐波的能量分配及频率偏移。在此基础上,利用超构表面的动态电磁响应,...  相似文献   

20.
Over the last decade significant progress has been made in developing neuroprosthetic devices to restore balance. However, there still remain major challenges to overcome before an advanced clinical implant is created. These include efficient wireless power and data transmission, multichannel stimulation with minimal crosstalk, effective and safe stimulation, an accurate modulation scheme, dynamic and adaptive feedback, device miniaturization, electrode fabrication and packaging. This paper provides a review of the development in vestibular prostheses to date, and uses a specific example to demonstrate the problems in designing the implantable circuits for such a neuroprosthetic device.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号