首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Smart electronic skin (e-skin) requires the easy incorporation of multifunctional sensors capable of mimicking skin-like perception in response to external stimuli. However, efficient and reliable measurement of multiple parameters in a single functional device is limited by the sensor layout and choice of functional materials. The outstanding electrical properties of black phosphorus and laser-engraved graphene (BP@LEG) demonstrates a new paradigm for a highly sensitive dual-modal temperature and strain sensor platform to modulate e-skin sensing functionality. Moreover, the unique hybridized sensor design enables efficient and accurate determination of each parameter without interfering with each other. The cationic polymer passivated BP@LEG composite material on polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene (SEBS) substrate outperforms as a positive temperature coefficient material, exhibiting a high thermal index of 8106 K (25–50  ° C) with high strain sensitivity (i.e., gauge factor, GF) of up to 2765 ( > 19.2%), ultralow strain resolution of 0.023%, and longer durability ( > 18 400 cycles), satisfying the e-skin requirements. Looking forward, this technique provides unique opportunities for broader applications, such as e-skin, robotic appendages, and health monitoring technologies.  相似文献   

2.
This work provides an all-digital smart temperature sensor with dual-mode transceiver chipset for wireless body area network (WBAN). The measurement results show that the proposed temperature sensor achieves a maximum temperature error < 0.6oC within the range from 20oC to 50oC. And a phase-frequency tunable clock generator (PFTCG) is designed with frequency and phase tuning capability on the fly. This chip is manufactured on a standard 90 nm CMOS process. The supply voltage to the chip core is globally applied at 0.5 V with 12 power-domain partitions for sleep-active and voltage-scaling management. The transceiver chipset provides maximum 7 Mbps data rate, resulting in 97.7% efficiency improvement in baseband circuit processing.  相似文献   

3.
Conventional elastomeric polymers used as substrates for wearable platforms have large positive Poisson's ratios (≈0.5) that cause a deformation mismatch with human skin that is multidirectionally elongated under bending of joints. This causes practical problems in elastomer-based wearable devices, such as delamination and detachment, leading to poorly reliable functionality. To overcome this issue, auxetic-structured mechanical reinforcement with glass fibers is applied to the elastomeric film, resulting in a negative Poisson's ratio (NPR), which is a skin-like stretchable substrate (SLSS). Several parameters for determining the materials and geometrical dimensions of the auxetic-structured reinforcing fillers are considered to maximize the NPR. Based on numerical simulation and digital image correlation analysis, the deformation tendencies and strain distribution of the SLSS are investigated and compared with those of the pristine elastomeric substrate. Owing to the strain-localization characteristics, an independent strain-pressure sensing system is fabricated using SLSS with a Ag-based elastomeric ink and a carbon nanotube-based force-sensitive resistor. Finally, it is demonstrated that the SLSS-based sensor platform can be applied as a wearable device to monitor the physical burden on the wrist in real time.  相似文献   

4.
Vanadium oxides (VOx) feature the potential for high-capacity Zn2+ storage, which are often preintercalated with inert ions or lattice water for accelerating Zn2+ migration kinetics. The inertness of these preintercalated species for Zn2+ storage and their incapability for conducting electrons, however, compromise the capacity and rate capability of VOx. Herein, Ni-BTA, a 1D conductive metal–organic framework (c-MOF), is intercalated into the interlayer space of VOx by coordinating organic ligands with preinserted Ni2+. The intercalated Ni-BTA improves the conductivity of VOx by π–d conjugation, facilitates Zn2+ migration by enlarging its interlayer spacing, and stabilizes the crystal structure of VOx as interlayer pillars, thus simultaneously enhancing the material's rate capability and cycling stability. Meanwhile, a dual reaction mechanism of Zn2+ storage, i.e., the redox of V5+/V3+ in VOx and the rearrangement of chemical bonds (CN/C N) in Ni-BTA, collaboratively contributes to an enhanced capacity. Consequently, this Ni-BTA-intercalated VOx material exhibits a high Zn2+ storage capacity of 464.2 mAh g−1 at 0.2 A g−1 and an excellent rate capability of 272.5 mAh g−1 at 5 A g−1. This work provides a general strategy for integrating c-MOFs with inorganic cathode materials to achieve high-capacity and high-rate performance.  相似文献   

5.
The delta-sigma converter is one of the high speed and resolution analog-to-digital modulators. Its implementation needs the low oversampling technique and the multi-bit D/A converter. The noise induced by the multi-bit D/A converter becomes one of the key factors deteriorating the signal-to-noise rate of the delta- sigma A/D converter. A novel structure with signal unity transfunction, dynamic element matching(DEM) and noise-shaping is discussed. The method is investigated to design converter based on the proposed structure. The behavior simulation indicates that the structure and the design method are feasible.  相似文献   

6.
A novel and simple fiber grating sensor based on high-duty-cycle sample fiber Bragg grating is proposed and demonstrated experimentally,This type of sensor can measure strain and temperature simultaneously with merits of low cost,high sensitivity and immunity to electro-magneic interference.The sensor has an accuracy of 20μεand 0.8 ℃ over a strain range of 500-1500 με and a temperature range of 5-36℃ under experimental conditions.  相似文献   

7.
The operation of a thermoelectric module in heating–cooling mode, generating mode, and regenerating mode can be discussed in terms of power, cooling load, and current. A direct current machine in motoring mode and generating mode and an induction motor in motoring mode and regenerating mode are analogous to thermoelectric modules. Therefore, the first objective of this work is to present the four-quadrant (4-Q) operation diagram and the 4-Q equivalent circuits of thermoelectric modules in heating–cooling mode and generating mode. The second objective is to present the cooling and regenerating curves of a thermoelectric module in cooling mode and regenerating mode. The curves are composed from the cooling powers and the generating powers, the input and output current, the thermal resistance of the heat exchanger, and the different temperatures that exist between the hot and cold sides of the thermoelectric module. The methodology used to present the data involved drawing analogies between the mechanical system, the electrical system, and the thermal system; an experimental setup was also used. The experimental setup was built to test a thermoelectric module (TE2) in cooling mode and regenerating mode under conditions in which it was necessary to control the different temperatures on the hot and cold sides of TE2. Two thermoelectric modules were used to control the temperature. The cold side was controlled by a thermoelectric module labeled TE1, whereas the hot side was controlled by a second thermoelectric module labeled TE3. The results include the power, the cooling load, and the current of the thermoelectric module, which are analogous to the torque, the power, the speed, and the slip speed of a direct current machine and an induction motor. This 4-Q operation diagram, the 4-Q equivalent circuits, and the cooling and regenerating curves of the thermoelectric module can be used to analyze the bidirectional current and to select appropriate operating conditions in the cooling and regenerating modes.  相似文献   

8.
Controlling liquid–solid triboelectrification is highly demanded in a wide range of applications, from electrostatic prevention to energy collection and utilization. Except for traditional unidirectional and irreversible ways, smart approaches are required urgently. Here, a novel temperature response liquid–solid triboelectric nanogenerator (TENG) is reported on the basis of a polycaprolactone (PCL) covered fluorinated alumina for tunable triboelectrification. The PCL conformation is regulated by temperature to endow the substrate controllable surface component and interfacial wettability to manipulate the liquid–solid triboelectricity flexibly. As the temperature rises from 20 to 40 °C, the short circuit current and the open-circuit voltage of the PCL-based TENG are reduced by more than 40 times. When the temperature drops to 20 °C, the electrical output can return to its original level again. Moreover, after one month, the electrical signal is still reversible and stable. In addition to water, the electrical output of organic liquid, such as ethylene glycol, also responds well to temperature. This work initially provides a new strategy for achieving the customizable manipulation of liquid–solid triboelectrification by polymer surface reorganization, gives a new idea for in situ monitoring the interfacial wettability changes, and configures the reconstruction of amphiphilic polymer using triboelectricity.  相似文献   

9.
A fabric hydrogel composite hernia mesh with biomechanical and mesh–tissue interface dual compliance is designed for scarless abdominal wall reconstruction. The mesh is composed of a polyester knitted fabric and chitosan–polyacrylamide hydrogel complex. The mechanical properties of the composite mesh are adjusted to resemble the human abdominal wall by alkali treatment of chitosan to achieve good biomechanical compliance. An adhesion group is introduced into the composite mesh that forms covalent bonds with tissue, eliminating the need for suturing, reducing stress concentration at the fixation site, achieving mesh-tissue interface compliance, and improving the simplicity of the operation. Covalent bonds and hydrogen bonds make the mesh have strong adhesion (70.1 ± 3.2 kPa) and repeatable (four times) robust adhesiveness. In vivo experiments using a rabbit abdominal wall defect model demonstrate quick adhesiveness and excellent functional reconstruction. Biomechanical and mesh–tissue interface dual compliance allow the tissue to regenerate an intact abdominal wall structure. The adhesive fabric hydrogel composite hernia mesh offers significant clinical values for repairing abdominal wall defects and provides design ideas for repairing other load-bearing soft tissues.  相似文献   

10.
Expedited conversion of O2 to H2O with minimal amounts of Pt is essential for wide applicability of PEM fuel cells (PEMFCs). Therefore, it is imperative to develop a process for catalyst management to circumvent unnecessary catalyst loss while improving the Pt utilization, catalytic activity, and durability. Here, the fabrication of a self-standing nanofiber electrode is demonstrated by employing electrospinning. This film-type catalyst simultaneously contains Pt–Co alloy nanoparticles and Co embedded in an N-doped graphitized carbon (Co–Nx) support derived from the electrospun zeolitic imidazolate frameworks. Notably, the flexible electrode is directly transferrable for the membrane-electrode assembly of high temperature PEMFC. In addition, the electrodes exhibit excellent performance, maybe owing to the synergistic interaction between the Pt–Co and Co–Nx as revealed by the computational modeling study. This method simplifies the fabrication and operation of cell device with negligible Pt loss, compared to ink-based conventional catalyst coating methods.  相似文献   

11.
Designing efficient electrocatalysts based on metal–organic framework (MOF) nanosheet arrays (MOFNAs) with controlled active heterointerface for the oxygen evolution reaction (OER) is greatly desired yet challenging. Herein, a facile strategy for the synthesis of MOF-based nanosheet arrays (γ-FeOOH/Ni-MOFNA) is developed with abundant heterointerfaces between Ni-MOF and γ-FeOOH nanosheets by introducing linker defects to the former. The experimental and theoretical results show the key role of linker defects in inducing the growth of secondary γ-FeOOH nanosheets onto the surface of Ni-MOFNAs, which further leads to the formation of interfacial Ni/Fe dual sites with high oxygen evolution activity. Notably, the resulting γ-FeOOH/Ni-MOFNA exhibits excellent OER performance with low overpotentials of 193 and 222 mV at 10 and 100 mA cm−2, respectively. Furthermore, the study of the structure–performance relationship of MOF-based heterostructures reveals that Ni sites at the interface of the γ-FeOOH/Ni-MOFNA have higher activity than those at the interface of NiFe layered double hydroxide and Ni-MOFNA. This study provides a new prospect on heterostructured electrocatalysts with highly active sites for enhanced OER.  相似文献   

12.

A new DC–DC converter capable of working with more than one source for harvesting energy from clean energy sources is proposed. Key features of this proposed converter are single inductor and reduced total number of components. In addition the converter has reduced stresses and power losses. Dual input and output modes, with its operation and steady-state analysis are discussed. Comparative study of the topologies given in literature with a proposed topology for parameters considered like the number of components and voltage gain is presented. Compatibility of the proposed converter is proved with reduced losses using loss distribution analysis of the converter and it is more reliable for energy system in telecom applications, which is validated using reliability analysis, is also highlighted. Finally, to substantiate the working of the non isolated DC–DC converter considered the test results are presented.

  相似文献   

13.
In this paper, we utilize clustering to achieve energy efficiency for the on–off wireless sensor network, whose member nodes alternate between active and inactive states. In the proposed Distributed and Energy Efficient Self Organization (DEESO) scheme, the head election is adjusted adaptively to the remaining battery levels of local active nodes, which is a completely distributed approach compared to LEACH that relying on other routing schemes to access global information. Furthermore, we apply the Adaptive Channel Assignment (ACA) to address the on-off topology changes. Simulation results show that DEESO delivers 184% amount of data to the base station as LEACH for the same amount of energy consumption and the effective network lifetime is extended by around 50%.  相似文献   

14.
AlAs/GaAs/In0.1Ga0.9As/GaAs/AlAs double-barrier resonant tunneling diodes(DBRTDs) grown on a semi-insulated GaAs substrate with molecular beam epitaxy is demonstrated.By sandwiching the In0.1Ga0.9As layer between GaAs layers,potential wells beside the two sides of barrier are deepened,resulting in an increase of the peak-to-valley current ratio (PVCR) and a peak current density.A special shape of collector is designed in order to reduce contact resistance and non-uniformity of the current;as a result the total current density in the device is increased.The use of thin barriers is also helpful for the improvement of the PVCR and the peak current density in DBRTDs.The devices exhibit a maximum PVCR of 13.98 and a peak current density of 89kA/cm2 at room temperature.  相似文献   

15.
Liu Yu  Wang Guoyu 《半导体学报》2006,27(2):313-317
介绍了基于0.35μm工艺设计的单片CMOS图像传感器芯片.该芯片采用有源像素结构,像素单元填充因数可达到43%,高于通常APS结构像素单元30%的指标.此外还设计了一种数字动态双采样技术,相对于传统的双采样技术(固定模式噪声约为0.5%),数字动态双采样技术具有更简洁的电路结构和更好抑制FPN噪声的效果.传感器芯片通过MPW计划采用Chartered 0.35μm数模混合工艺实现.实验结果表明芯片工作良好,图像固定模式噪声约为0.17%.  相似文献   

16.
The rechargeable Li–CO2 battery shows great potential in civil, military, and aerospace fields due to its high theoretical energy density and CO2 capture capability. To facilitate the practical application of Li–CO2 battery, the design of efficient, low-cost, and robust non-noble metal cathodes to boost CO2 reduction/evolution kinetics is highly desirable yet remains a challenge. Herein, single-atom cadmium is reported with a Cd-N4 coordination structure enable rapid kinetics of both the discharge and recharge process when employed as a cathode catalyst, and thus facilitates exceptional rate performance in a Li–CO2 battery, even up to 10 A g−1, and remains stable at a high current density (100 A g−1). An unprecedented discharge capacity of 160045 mAh g−1 is attained at 500 mA g−1. Excellent cycling stability is maintained for 1685 and 669 cycles at 1 A g−1 and capacities of 0.5 and 1 Ah g−1, respectively. Density functional theory calculations reveal low energy barriers for both Li2CO3 formation and decomposition reactions during the respective discharge and recharge process, evidencing the high catalytic activity of single Cd sites. This study provides a simple and effective avenue for developing highly active and stable single-atom non-precious metal cathode catalysts for advanced Li–CO2 batteries.  相似文献   

17.
Covalent organic frameworks (COFs) with various topologies are typically synthesized by selecting and designing connecting units with rich shapes. However, this process is time-consuming and labour-intensive. Besides, the tight stacking of COFs layers greatly restrict their structural advantages. It is crucial to effectively exploit the high porosity and active sites of COFs by topological design. Herein, for the first time, inducing in situ topological changes in sub-chemometric COFs by adding graphene oxide (GO) without replacing the monomer, is proposed. Surprisingly, GO can slow down the intermolecular stacking and induce rearrangement of COFs nanosheets. The channels of D- [4+3] COFs are significantly altered while the stacking of periodically expanded framework is weakened. This not only maximizes the exposure of pore area and polar groups, but also shortens the channels and increases the redox activity, which enables high loading while enhancing host-guest interactions. This topological transformation to exhibit the structural features of COFs for efficient application is an innovative molecular design strategy.  相似文献   

18.
The seeded growth method offers an efficient way to design core–shell semiconductor nanocrystals in the liquid phase. The combination of seed and shell materials offers wide tunability of morphologies and photophysical properties. Also, semiconductor nanorods (NRs) exhibit unique polarized luminescence which can potentially break the theoretical limit of external quantum efficiency in light emitting diodes based on spherical quantum dots. Although rod-in-rod core–shell NRs present higher degree of polarization, most studies have focused on dot-in-rod core–shell NRs due to the difficulties in achieving uniform NR seeds. Here, this study prepares high-quality uniform CdSe NRs by improving the reactivity of the Se source, using a secondary phosphine, namely diphenylphosphine, to dissolve the Se power, along with the conventional tertiary phosphine, namely trioctylphosphine. Starting from these high-quality NR seeds, this study synthesizes CdSe/CdxZn1−xS/ZnS core–shell NRs with narrow emission bandwidth (29 nm at 620 nm), high PLQY (89%) and high linear polarization (p = 0.90). This study then assembles these core–shell NRs using the confined assembly method and fabricates long-range-ordered microarrays with programmable patterns and displaying highly polarized emission (p = 0.80). This study highlights the great potential of NRs for application in liquid crystal displays and full-color light emitting diodes displays.  相似文献   

19.
Pushkarchuk  A. L.  Nizovtsev  A. P.  Kilin  S. Ya.  Kuten  S. A.  Pushkarchuk  V. A.  Michels  D.  Lyakhov  D.  Jelezko  F. 《Semiconductors》2020,54(12):1725-1727
Semiconductors - The “germanium-vacancy” (GeV) center in diamond can be used as Temperature Sensors. The idea of GeV-based thermometry is based on optical measurements of the spectral...  相似文献   

20.
Abstract: The current measuring principle, the hardware structure and the software functions of a high voltage breaker current monitoring and fault diagnosis system are introduced. A simple algorithm for calculating the current effective value is given. The cut - off characteristics of the breaker are classified. This system can provide a foundation for reasonably determining the breaker service period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号