首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite long-term efforts for exploring antibacterial agents or drugs, potentiating antibacterial activity and meanwhile minimizing toxicity to the environment remains a challenge. Here, it is experimentally shown that the functionality of reduced graphene oxide (rGO) through copper ions displays selective antibacterial activity that is significantly stronger than that of rGO itself and no toxicity to mammalian cells. Remarkably, this antibacterial activity is two-orders-of-magnitude greater than the activity of its surrounding copper ions. It is demonstrated that rGO is functionalized through the cation–π interaction to massively adsorb copper ions to form a rGO–copper composite and result in an extremely low concentration level of surrounding copper ions (less than ≈0.5 µm ). These copper ions on rGO are positively charged and strongly interact with negatively charged bacterial cells to selectively achieve antibacterial activity, while rGO exhibits the functionality to not only actuate rapid delivery of copper ions and massive assembly onto bacterial cells but also result in the valence shift in the copper ions from Cu2+ into Cu+, which greatly enhances the antibacterial activity. Notably, this rGO functionality through cation–π interaction with copper ions can similarly achieve algaecidal activity but does not exert cytotoxicity against neutrally charged mammalian cells.  相似文献   

2.
Freestanding electrodes are a promising way to increase the energy density of the batteries by decreasing the overall amount of electrochemically inactive materials. Freestanding antimony doped tin oxide (ATO)-based hybrid materials have not been reported so far, although this material has demonstrated excellent performance in conventionally designed electrodes. Two different strategies, namely electrospinning and freeze-casting, are explored for the fabrication of ATO-based hybrid materials. It is shown that the electrospinning of ATO/carbon based electrodes from polyvinyl pyrrolidone polymer (PVP) solutions was not successful, as the resulting electrode material suffers from rapid degradation. However, freestanding reduced graphene oxide (rGO) containing ATO/C/rGO nanocomposites prepared via a freeze-casting route demonstrates an impressive rate and cycling performance reaching 697 mAh g−1 at a high current density of 4 A g−1, which is 40 times higher as compared to SnO2/rGO and also exceeds the freestanding SnO2-based composites reported so far. Antimony doping of the nanosized tin oxide phase and carbon coating are thereby shown to be essential factors for appealing electrochemical performance. Finally, the freestanding ATO/C/rGO anodes are combined with freestanding LiFe0.2Mn0.8PO4/rGO cathodes to obtain a full freestanding cell operating without metal current collector foils showing nonetheless an excellent cycling stability.  相似文献   

3.
Reduced‐graphene‐oxide (rGO) aerogels provide highly stabilising, multifunctional, porous supports for hydrotalcite‐derived nanoparticles, such as MgAl‐mixed‐metal‐oxides (MgAl‐MMO), in two commercially important sorption applications. Aerogel‐supported MgAl‐MMO nanoparticles show remarkable enhancements in adsorptive desulfurization performance compared to unsupported nanoparticle powders, including substantial increases in organosulfur uptake capacity (>100% increase), sorption kinetics (>30‐fold), and nanoparticle regeneration stability (>3 times). Enhancements in organosulfur capacity are also observed for aerogel‐supported NiAl‐ and CuAl‐metal‐nanoparticles. Importantly, the electrical conductivity of the rGO aerogel network adds completely new functionality by enabling accurate and stable nanoparticle temperature control via direct electrical heating of the graphitic support. Support‐mediated resistive heating allows for thermal nanoparticle recycling at much faster heating rates (>700 °C?min?1) and substantially reduced energy consumption, compared to conventional, external heating. For the first time, the CO2 adsorption performance of MgAl‐MMO/rGO hybrid aerogels is assessed under elevated‐temperature and high‐CO2‐pressure conditions relevant for pre‐combustion carbon capture and hydrogen generation technologies. The total CO2 capacity of the aerogel‐supported MgAl‐MMO nanoparticles is more than double that of the unsupported nanoparticles and reaches 2.36 mmol·CO2 g?1 ads (at pCO2 = 8 bar, T = 300 °C), outperforming other high‐pressure CO2 adsorbents.  相似文献   

4.
Wearable monitoring systems provide valuable insights about the state of wellness, performance, and progression of diseases. Although conventional wearable systems have been effective in measuring a few key biophysical markers, they offer limited insights into biochemical activity and are otherwise cumbersome in ambulatory modes of use, relying on wired connections, mechanical straps, and bulky electronics. Recent advances in skin‐interfaced microfluidics, stretchable/flexible electronics, and mechanics have created new wearable systems with capabilities in real‐time, noninvasive analysis of sweat biochemistry in combination with biophysical metrics. Here, the latest technologies in multifunctional sweat sensing systems are presented with a focus on novel microfluidic designs, fully‐integrated wireless electrochemical sensors, and hybrid biochemical/biophysical sensing capabilities, creating real‐time physiological insights.  相似文献   

5.
Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) along with hydrogen evolution reaction (HER) have been considered critical processes for electrochemical energy conversion and storage through metal‐air battery, fuel cell, and water electrolyzer technologies. Here, a new class of multifunctional electrocatalysts consisting of dominant metallic Ni or Co with small fraction of their oxides anchored onto nitrogen‐doped reduced graphene oxide (rGO) including Co‐CoO/N‐rGO and Ni‐NiO/N‐rGO are prepared via a pyrolysis of graphene oxide and cobalt or nickel salts. Ni‐NiO/N‐rGO shows the higher electrocatalytic activity for the OER in 0.1 m KOH with a low overpotential of 0.24 V at a current density of 10 mA cm?2, which is superior to that of the commercial IrO2. In addition, it exhibits remarkable activity for the HER, demonstrating a low overpotential of 0.16 V at a current density of 20 mA cm?2 in 1.0 m KOH. Apart from similar HER activity to the Ni‐based catalyst, Co‐CoO/N‐rGO displays the higher activity for the ORR, comparable to Pt/C in zinc‐air batteries. This work provides a new avenue for the development of multifunctional electrocatalysts with optimal catalytic activity by varying transition metals (Ni or Co) for these highly demanded electrochemical energy technologies.  相似文献   

6.
The development of flexible and adaptable multifunctional sensing systems for human–machine interaction, especially for animal voice-emotion identification, is highly desirable yet quite challenging. Herein, a multifunctional triboelectric nanogenerator (TENG) based on ordered hierarchical microhump arrays is proposed and fabricated by template-assisted electrospinning with a facile, low-cost, and expandable manufacturing process. Performances of a single-electrode TENG based on the patterned nanofiber films with microhump arrays (NFM-TENG) are studied in detail by varying mesh number of the template. Electric field structure of the collector is altered by pore sizes, wire diameters, and protrusions of the receiving templates subjected to different mesh numbers, generating different degrees of microhump arrays on the surface of the nanofiber film. NFM-TENG demonstrates high sensitivity (15.94 mV Pa−1), fast response and recovery time (76 and 58 ms), a large power density of 122 mW m−2, and excellent ability of structural retention. Integrated with four functions of energy harvesting, pressure sensing, human physiological sensing, and animal voice-emotion identification, NFM-TENG achieves real-time monitoring of human physiological, motion, handwriting, and animal voice-emotion signals without an external power supply. This study shows significant application strategies for self-powered human–machine interaction devices, novel animal voice-emotion identification, biodiversity conservation, and so on.  相似文献   

7.
Electrically insulating polymer dielectrics with high energy densities and excellent thermal conductivities are showing tremendous potential for dielectric energy storage. However, the practical application of polymer dielectrics often requires mutually exclusive multifunctional properties such as high dielectric constants, high breakdown strengths, and high thermal conductivities. The rational assembly of 2D nanofillers of boron nitride nanosheets (BNNS) and reduced graphene oxide (rGO) into a well‐aligned micro‐sandwich structure in polyimide (PI) composites is reported. The alternating stacking of rGO and BNNS synergistically exploits the large difference in their electrical conductivities to yield a high dielectric constant with a moderate breakdown strength. Moreover, the distinctively separated rGO and BNNS layers give rise to higher thermal conductivities of composites than those containing mixed fillers because of reduced phonon scattering at the interfaces between two identical fillers, as verified by molecular dynamics simulations. Consequently, the micro‐sandwich nanocomposite prevails over the PI film with a simultaneously high dielectric constant of ≈579, a high energy density (43‐fold higher than PI) and an excellent thermal conductivity (11‐fold higher than PI) at a low hybrid filler content of only 2.5 vol%. The multifunctional nanocomposites developed in this work are promising for flexible dielectrics with excellent heat dissipation.  相似文献   

8.
MXenes, 2D transition metal carbides, and nitrides have attracted tremendous interest because of their metallic conductivity, solution processability, and excellent merits in energy storage and other applications. However, the pristine MXene films often suffer from poor ambient stability and mechanical properties that stem from their polar terminal groups and weak interlayer interactions. Here, a heteroatom doping strategy is developed to tailor the surface functionalities of MXene, followed by the addition of large-sized reduced graphene oxide (rGO) as conductive additives to achieve a scalable production of S, N-MXene/rGO (SNMG-40) hybrid film with high mechanical strength ( ≈ 45 MPa) and energy storage properties (698.5 F cm−3). Notably, the SNMG-40 film also demonstrates long-term cycling stability ( ≈ 98% capacitance retention after 30 000 cycles), which can be maintained under ambient condition or immersed in H2SO4 electrolyte for more than 100 days. The asymmetric supercapacitor (aMGSC) based on SNMG-40 film shows an ultrahigh energy density of 22.3 Wh kg−1, which is much higher than those previously reported MXene-based materials. Moreover, the aMGSC also provides excellent mechanical durability under different deformation conditions. Thus, this strategy makes MXene materials more competitive for real-world applications such as flexible electronics and electromagnetic interference shielding.  相似文献   

9.
The emergence of flexible and wearable electronic devices with shape amenability and high mobility has stimulated the development of flexible power sources to bring revolutionary changes to daily lives. The conventional rechargeable batteries with fixed geometries and sizes have limited their functionalities in wearable applications. The first‐ever graphene‐based fibrous rechargeable batteries are reported in this work. Ultralight composite fibers consisting of reduced graphene oxide/carbon nanotube filled with a large amount of sulfur (rGO/CNT/S) are prepared by a facile, one‐pot wet‐spinning method. The liquid crystalline behavior of high concentration GO sheets facilitates the alignment of rGO/CNT/S composites, enabling rational assembly into flexible and conductive fibers as lithium–sulfur battery electrodes. The ultralight fiber electrodes with scalable linear densities ranging from 0.028 to 0.13 mg cm?1 deliver a high initial capacity of 1255 mAh g?1 and an areal capacity of 2.49 mAh cm?2 at C /20. A shape‐conformable cable battery prototype demonstrates a stable discharge characteristic after 30 bending cycles.  相似文献   

10.
Solely inorganic semiconductors or their nanostructure based ultra violet photo detectors are still not up to the mark and remain unsatisfactory due to their inferior electrical performances. Therefore, the hybridization of inorganic semiconducting materials with organic semiconducting materials is emerging as one of the strategic methodology that has been recently implemented to augment the electrical performance like photocurrent, conductivity etc. Herein, we present a facile and efficient method for the hybridization of SnO2 nano wire with reduced grapheme oxide (rGO) nano sheet and subsequent investigation of enhancement in photocurrent of the hybrid material. Prior to the hybridization of SnO2 nanowire with rGO, SnO2 nanowire is synthesized via hydrothermal route, and contemporarily, rGO is synthesized via improved Hummers method followed by reduction using microwave. Further, as obtained hybrid material of SnO2/rGO is deposited over the Si/SiO2, glass and p-doped Si substrates via spray method by placing the mixture solution of SnO2/rGO hybrid, inside the medicine chamber of baby's spray nebulizer. The morphological properties have been discussed taking into account of atomic force microscopy (AFM), and scanning electron microscopy (SEM). The formation of nano-hybrid materials and structural properties of SnO2, rGO, and SnO2/rGO hybrid have been discussed based on X-ray diffraction (XRD), FTIR and UV–Vis spectroscopy. Further, the current-voltage (I-V) characteristics of as grown thin film of hybrid is conducted using cyclic voltammetry (CV) and AFM conducting tip. The metal-semiconductor- metal (MSM) structure is characterized in dark and in presence of light and found wavelength dependent photo detector property with drastic enhancement in photocurrent (102) at ±3 V for shorter wavelength as compare to longer wavelength. Thus, our material is selective for light source and can be used further for selective as well as short wavelength photo detector.  相似文献   

11.
The development of high-performance electrodes that increase the energy density of supercapacitors (SCs) (without compromising their power density) and have a wide temperature tolerance is crucial for the application of SCs in electric vehicles. Recent research has focused on the preparation of multicomponent materials to form electrodes with enhanced electrochemical properties. Herein, a siloxene–graphene (rGO) heterostructure electrode-based symmetric SC (SSC) is designed that delivers a high energy density (55.79 Wh kg−1) and maximum power density of 15 000 W kg−1. The fabricated siloxene–rGO SSC can operate over a wide temperature range from –15 to 80 °C, which makes them suitable for applications in automobiles. This study shows the practical applicability of siloxene–rGO SSC to drive an electric car as well as to capture the braking energy in a regenerative brake-electric vehicle prototype. This work opens new directions for evaluating the use of siloxene–rGO SSC as suitable energy devices in electric vehicles.  相似文献   

12.
Multifunctional materials have received significant research interest due to the potential for performance enhancements over traditional materials through the integration of responsive properties. Composite materials are ideally suited for use as multifunctional materials due to their use of two or more phases and the ease at which their properties can be anisotropically tailored. Here, a methodology for the integration of ferroelectricity into a fiber reinforced polymer composite is presented by synthesizing a barium titanate nanowire film on the surface of carbon fibers using a novel two‐step hydrothermal process. A refined piezoelectric force microscopy method is used to quantify the piezoelectric properties of the core–shell fiber resulting in an average d33 of 31.6 ± 14.5 pm V?1 and an average d31 of ?5.4 ± 3.2 pm V?1. The multifunctionality of this piezoelectric coated fiber is demonstrated through excitation of a cantilevered fiber with a 0.5 g sinusoidal base acceleration at the fiber's fundamental resonant frequency, producing a root‐mean‐square voltage of 16.4 mV. This result demonstrates the ferroelectric properties of the multifunctional structural fiber and its application for sensing and energy harvesting.  相似文献   

13.
Batteries and supercapacitors continue to be one of the most researched topics in the class of energy storage devices. The continuous development of battery and supercapacitor cell components has shown promising development throughout the years—from slabs of pure metal to porous and tailored structures of metal-based active materials. In this direction, metal–organic frameworks (MOFs) serve great advantages in improving the properties and structure of the derived metal-based active materials. This research provides a novel electrode material, Ni–Co–Se/C@CuO, derived from Ni–Co-MOF integrated with pre-oxidized Cu mesh. The superior electrochemical performance of Ni–Co–Se/C@CuO over Ni–Co-MOF@CuO is evident through its higher specific capacity, lower resistivity, richer redox activity, and more favorable diffusion-dominated storage mechanism. When assembled as a hybrid supercapacitor (HSC), the hybrid device using rGO and Ni–Co–Se/C@CuO as electrodes exhibits a high energy density of 42 W h kg−1 at a power density of 2 kW kg−1, and maintains its capacity retention even after 20 000 cycles. The improved capacity performance is also evaluated using first-principle investigations, revealing that the unique and preserved heterostructure of Ni–Co–Se/C@CuO portrays enhanced metallic properties. Such evaluation of novel electrodes with superior properties may benefit next-generation electrodes for supercapacitor devices.  相似文献   

14.
The wearable intelligent electronic product similar to electronic skin has a great application prospect. However, flexible electronic with high performance pressure sensing functions are still facing great challenges. In this paper, the highly sensitive flexible electronic skin (FES) based on the PVDF/rGO/BaTiO3 composite thin film was fabricated using the near-field electrohydrodynamic direct-writing (NFEDW) method. The PVDF/rGO/BaTiO3 composite solution was directly written on flexible substrate by the NFEDW method to fabricate FES with micro/nano fiber structure, which has the function of sensing pressure with high sensitivity and fast response. The surface morphology and microstructure were characterized by SEM, AFM, and optical microscope in detail. The fabricated FES has high sensitivity (59 kPa−1) and faster response time (130 ms). FES has been successfully applied to the detection of human motion and subtle physiological signals. The experimental results show that FES has good stability and reliability. FES can recognize human motion, and it has a broad application prospect in the field of wearable devices.  相似文献   

15.
Polydimethylsiloxanes (PDMS) foam as one of next-generation polymer foam materials shows poor surface adhesion and limited functionality, which greatly restricts its potential applications. Fabrication of advanced PDMS foam materials with multiple functionalities remains a critical challenge. In this study, unprecedented self-adhesive PDMS foam materials are reported with worm-like rough structure and reactive groups for fabricating multifunctional PDMS foam nanocomposites decorated with MXene/cellulose nanofiber (MXene/CNF) interconnected network by a facile silicone foaming and dip-coating strategy followed by silane surface modification. Interestingly, such self-adhesive PDMS foam produces strong interfacial adhesion with the hybrid MXene/CNF nano-coatings. Consequently, the optimized PDMS foam nanocomposites have excellent surface super-hydrophobicity (water contact angle of ≈159o), tunable electrical conductivity (from 10−8 to 10 S m−1), stable compressive cyclic reliability in both wide-temperature range (from −20 to 200 oC) and complex environments (acid, sodium, and alkali conditions), outstanding flame resistance (LOI value of >27% and low smoke production rate), good thermal insulating performance and reliable strain sensing in various stress modes and complex environmental conditions. It provides a new route for the rational design and development of advanced PDMS foam nanocomposites with versatile multifunctionalities for various promising applications such as intelligent healthcare monitoring and fire-safe thermal insulation.  相似文献   

16.
A strategy to prepare flexible and conductive MXene/graphene (reduced graphene oxide, rGO) supercapacitor electrodes by using electrostatic self‐assembly between positively charged rGO modified with poly(diallyldimethylammonium chloride) and negatively charged titanium carbide MXene nanosheets is presented. After electrostatic assembly, rGO nanosheets are inserted in‐between MXene layers. As a result, the self‐restacking of MXene nanosheets is effectively prevented, leading to a considerably increased interlayer spacing. Accelerated diffusion of electrolyte ions enables more electroactive sites to become accessible. The freestanding MXene/rGO‐5 wt% electrode displays a volumetric capacitance of 1040 F cm?3 at a scan rate of 2 mV s?1 , an impressive rate capability with 61% capacitance retention at 1 V s?1 and long cycle life. Moreover, the fabricated binder‐free symmetric supercapacitor shows an ultrahigh volumetric energy density of 32.6 Wh L?1, which is among the highest values reported for carbon and MXene based materials in aqueous electrolytes. This work provides fundamental insight into the effect of interlayer spacing on the electrochemical performance of 2D hybrid materials and sheds light on the design of next‐generation flexible, portable and highly integrated supercapacitors with high volumetric and rate performances.  相似文献   

17.
Stretchable and multifunctional sensors can be applied in multifunctional sensing devices, safety forewarning equipment, and multiparametric sensing platforms. However, a stretchable and multifunctional sensor was hard to fabricate until now. Herein, a scalable and efficient fabrication strategy is adopted to yield a sensor consisting of ZnO nanowires and polyurethane fibers. The device integrates high stretchability (tolerable strain up to 150%) with three different sensing capabilities, i.e., strain, temperature, and UV. Typically achieved specifications for strain detection are a fast response time of 38 ms, a gauge factor of 15.2, and a high stability of >10 000 cyclic loading tests. Temperature is detected with a high temperature sensitivity of 39.3% °C?1, while UV monitoring features a large ON/OFF ratio of 158.2. With its fiber geometry, mechanical flexibility, and high stretchability, the sensor holds tremendous prospect for multiparametric sensing platforms, including wearable devices.  相似文献   

18.
Liquid-like nanoparticle organic hybrid materials (NOHMs) consisting of a silica core with ionically grafted branched polyethyleneimine chains (referred to as NIPEI) are encapsulated within submicron-scale polyacrylonitrile (PAN)/polymer-derived-ceramic electrospun fibers. The addition of a room-temperature curable, liquid-phase organopolysilazane (OPSZ) ceramic precursor to the PAN/NOHM solution enhances the internal dispersion of NOHMs and forms a thin ceramic sheath layer on the fiber exterior, shielding the hydrophilic NIPEI to produce near-superhydrophobic non-woven fiber mats with contact angles exceeding 140°. 60:40 loadings of NOHMs to PAN/OPSZ can be reliably achieved with low OPSZ percentages required, and up to 4:1 NOHM:polymer loadings are possible before losing hydrophobicity. These fibers demonstrate up to ≈2 mmol CO2 g−1 fiber capture capacities in a pure CO2 atmosphere through the nonwoven fibrous networks and the permeability of the OPSZ shell. The hybrid fibers additionally show enhanced capture kinetics under pure CO2 and 400 ppm CO2 conditions, indicating their promising application as a direct air capture platform.  相似文献   

19.
Flexible pressure sensors offer a wide application range in health monitoring and human–machine interaction. However, their implementation in functional textiles and wearable electronics is limited because existing devices are usually small, 0D elements, and pressure localization is only achieved through arrays of numerous sensors. Fiber‐based solutions are easier to integrate and electrically address, yet still suffer from limited performance and functionality. An asymmetric cross‐sectional design of compressible multimaterial fibers is demonstrated for the detection, quantification, and localization of kPa‐scale pressures over m2‐size surfaces. The scalable thermal drawing technique is employed to coprocess polymer composite electrodes within a soft thermoplastic elastomer support into long fibers with customizable architectures. Thanks to advanced mechanical analysis, the fiber microstructure can be tailored to respond in a predictable and reversible fashion to different pressure ranges and locations. The functionalization of large, flexible surfaces with the 1D sensors is demonstrated by measuring pressures on a gymnastic mat for the monitoring of body position, posture, and motion.  相似文献   

20.
Inorganic lead halide perovskite has become an emerging material for modern photoelectric and electronic nanodevices due to its excellent optical and electronic properties. In view of its huge dielectric and electrical properties, inorganic CsPbBr3 perovskite is introduced into the piezoelectric nanogenerator (PENG). Based on one-step electrospinning of solutions containing CsPbBr3 precursors and polyvinylidene difluoride (PVDF), in situ growth of CsPbBr3 nanocrystals in PVDF fibers (CsPbBr3@PVDF composite fibers) with highly uniform size and spatial distribution are synthesized. The CsPbBr3@PVDF composite fibers based PENG reveals an open-circuit voltage (Voc) of 103 V and a density of short-circuit current (Isc) of 170  µ A cm−2, where the Voc is comparable to the state-of-the-art hybrid composite piezoelectric nanogenerators (PENGs) and the density of Isc is 4.86 times higher than that of lead halide perovskites counterpart ever reported. Moreover, CsPbBr3@PVDF composite fibers based PENG exhibits fundamentally improved thermal/water/acid–base stabilities. This study suggests that the CsPbBr3@PVDF composite fiber is a good candidate for fabricating high-performance PENGs, promising application potentials in mechanical energy harvesting and motion sensing technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号