首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
Mitochondrial dysfunction during ischemic stroke ultimately manifests as ATP depletion. Mitochondrial ATP synthase upon loss of mitochondrial membrane potential during ischemia rapidly hydrolyses ATP and thus contributes to ATP depletion. Increasing evidence suggests that inhibition of ATP synthase limits ATP depletion and is protective against ischemic tissue damage. Bedaquiline (BDQ) is an anti-microbial agent, approved for clinical use, that inhibits ATP synthase of Mycobacteria; however recently it has been shown to act on mitochondrial ATP synthase, inhibiting both ATP synthesis and hydrolysis in low micromolar concentrations. In this study, we investigated whether preconditioning with BDQ can alleviate ischemia/reperfusion-induced brain injury in Wistar rats after middle cerebral artery occlusion-reperfusion and whether it affects mitochondrial functions. We found that BDQ was effective in limiting necrosis and neurological dysfunction during ischemia-reperfusion. BDQ also caused inhibition of ATPase activity, mild uncoupling of respiration, and stimulated mitochondrial respiration both in healthy and ischemic mitochondria. Mitochondrial calcium retention capacity was unaffected by BDQ preconditioning. We concluded that BDQ has neuroprotective properties associated with its action on mitochondrial respiration and ATPase activity.  相似文献   

2.
Background: Alzheimer’s disease (AD) is characterized by an accumulation of amyloid β (Aβ) peptides in the brain and mitochondrial dysfunction. Platelet activation is enhanced in AD and platelets contribute to AD pathology by their ability to facilitate soluble Aβ to form Aβ aggregates. Thus, anti-platelet therapy reduces the formation of cerebral amyloid angiopathy in AD transgenic mice. Platelet mitochondrial dysfunction plays a regulatory role in thrombotic response, but its significance in AD is unknown and explored herein. Methods: The effects of Aβ-mediated mitochondrial dysfunction in platelets were investigated in vitro. Results: Aβ40 stimulation of human platelets led to elevated reactive oxygen species (ROS) and superoxide production, while reduced mitochondrial membrane potential and oxygen consumption rate. Enhanced mitochondrial dysfunction triggered platelet-mediated Aβ40 aggregate formation through GPVI-mediated ROS production, leading to enhanced integrin αIIbβ3 activation during synergistic stimulation from ADP and Aβ40. Aβ40 aggregate formation of human and murine (APP23) platelets were comparable to controls and could be reduced by the antioxidant vitamin C. Conclusions: Mitochondrial dysfunction contributes to platelet-mediated Aβ aggregate formation and might be a promising target to limit platelet activation exaggerated pathological manifestations in AD.  相似文献   

3.
Hyperlipidemia is a major risk factor for cardiovascular morbidity and mortality. Statins are the first-choice therapy for dyslipidemias and are considered the cornerstone of atherosclerotic cardiovascular disease (ASCVD) in both primary and secondary prevention. Despite the statin-therapy-mediated positive effects on cardiovascular events, patient compliance is often poor. Statin-associated muscle symptoms (SAMS) are the most common side effect associated with treatment discontinuation. SAMS, which range from mild-to-moderate muscle pain, weakness, or fatigue to potentially life-threatening rhabdomyolysis, are reported by 10% to 25% of patients receiving statin therapy. There are many risk factors associated with patient features and hypolipidemic agents that seem to increase the risk of developing SAMS. Due to the lack of a “gold standard”, the diagnostic test for SAMS is based on a clinical criteria score, which is independent of creatine kinase (CK) elevation. Mechanisms that underlie the pathogenesis of SAMS remain almost unclear, though a high number of risk factors may increase the probability of myotoxicity induced by statin therapy. Some of these, related to pharmacokinetic properties of statins and to concomitant therapies or patient characteristics, may affect statin bioavailability and increase vulnerability to high-dose statins.  相似文献   

4.
Mitochondrial function is at the nexus of pathways regulating synaptic-plasticity and cellular resilience. The involvement of brain mitochondrial dysfunction along with increased reactive oxygen species (ROS) levels, accumulating mtDNA mutations, and attenuated autophagy is implicated in psychiatric and neurodegenerative diseases. We have previously modeled mild mitochondrial dysfunction assumed to occur in bipolar disorder (BPD) using exposure of human neuronal cells (SH-SY5Y) to rotenone (an inhibitor of mitochondrial-respiration complex-I) for 72 and 96 h, which exhibited up- and down-regulation of mitochondrial respiration, respectively. In this study, we aimed to find out whether autophagy enhancers (lithium, trehalose, rapamycin, and resveratrol) and/or ROS scavengers [resveratrol, N-acetylcysteine (NAC), and Mn-Tbap) can ameliorate neuronal mild mitochondrial dysfunction. Only lithium (added for the last 24/48 h of the exposure to rotenone for 72/96 h, respectively) counteracted the effect of rotenone on most of the mitochondrial respiration parameters (measured as oxygen consumption rate (OCR)). Rapamycin, resveratrol, NAC, and Mn-Tbap counteracted most of rotenone’s effects on OCR parameters after 72 h, possibly via different mechanisms, which are not necessarily related to their ROS scavenging and/or autophagy enhancement effects. The effect of lithium reversing rotenone’s effect on OCR parameters is compatible with lithium’s known positive effects on mitochondrial function and is possibly mediated via its effect on autophagy. By-and-large it may be summarized that some autophagy enhancers/ROS scavengers alleviate some rotenone-induced mild mitochondrial changes in SH-SY5Y cells.  相似文献   

5.
Cisplatin and oxaliplatin are treatment options for a variety of cancer types. While highly efficient in killing cancer cells, both chemotherapeutics cause severe side effects, e.g., peripheral neuropathies. Using a cell viability assay, a mitochondrial stress assay, and live-cell imaging, the effects of cis- or oxaliplatin on the mitochondrial function, reactive oxygen species (ROS) production, and mitochondrial and cytosolic calcium concentration of transient receptor potential ankyrin 1 (TRPA1)- or vanilloid 1 (TRPV1)-positive dorsal root ganglion (DRG) neurons of adult Wistar rats were determined. Mitochondrial functions were impaired after exposure to cis- or oxaliplatin by mitochondrial respiratory chain complex I-III inhibition. The basal respiration, spare respiratory capacity, and the adenosine triphosphate (ATP)-linked respiration were decreased after exposure to 10 µM cis- or oxaliplatin. The ROS production showed an immediate increase, and after reaching the peak, ROS production dropped. Calcium imaging showed an increase in the cytosolic calcium concentration during exposure to 10 µM cis- or oxaliplatin in TRPA1- or TRPV1-positive DRG neurons while the mitochondrial calcium concentration continuously decreased. Our data demonstrate a significant effect of cis- and oxaliplatin on mitochondrial function as an early event of platinum-based drug exposure, suggesting mitochondria as a potential target for preventing chemotherapy-induced neuropathy.  相似文献   

6.
Altered mitochondrial function is currently recognized as an important factor in atherosclerosis initiation and progression. Mitochondrial dysfunction can be caused by mitochondrial DNA (mtDNA) mutations, which can be inherited or spontaneously acquired in various organs and tissues, having more or less profound effects depending on the tissue energy status. Arterial wall cells are among the most vulnerable to mitochondrial dysfunction due to their barrier and metabolic functions. In atherosclerosis, mitochondria cause alteration of cellular metabolism and respiration and are known to produce excessive amounts of reactive oxygen species (ROS) resulting in oxidative stress. These processes are involved in vascular disease and chronic inflammation associated with atherosclerosis. Currently, the list of known mtDNA mutations associated with human pathologies is growing, and many of the identified mtDNA variants are being tested as disease markers. Alleviation of oxidative stress and inflammation appears to be promising for atherosclerosis treatment. In this review, we discuss the role of mitochondrial dysfunction in atherosclerosis development, focusing on the key cell types of the arterial wall involved in the pathological processes. Accumulation of mtDNA mutations in isolated arterial wall cells, such as endothelial cells, may contribute to the development of local inflammatory process that helps explaining the focal distribution of atherosclerotic plaques on the arterial wall surface. We also discuss antioxidant and anti-inflammatory approaches that can potentially reduce the impact of mitochondrial dysfunction.  相似文献   

7.
Mitochondrial dysfunctions are implicated in several pathologies, such as metabolic, cardiovascular, respiratory, and neurological diseases, as well as in cancer and aging. These metabolic alterations are usually assessed in human or murine samples by mitochondrial respiratory chain enzymatic assays, by measuring the oxygen consumption of intact mitochondria isolated from tissues, or from cells obtained after physical or enzymatic disruption of the tissues. However, these methodologies do not maintain tissue multicellular organization and cell-cell interactions, known to influence mitochondrial metabolism. Here, we develop an optimal model to measure mitochondrial oxygen consumption in heart and lung tissue samples using the XF24 Extracellular Flux Analyzer (Seahorse) and discuss the advantages and limitations of this technological approach. Our results demonstrate that tissue organization, as well as mitochondrial ultrastructure and respiratory function, are preserved in heart and lung tissues freshly processed or after overnight conservation at 4 °C. Using this method, we confirmed the repeatedly reported obesity-associated mitochondrial dysfunction in the heart and extended it to the lungs. We set up and validated a new strategy to optimally assess mitochondrial function in murine tissues. As such, this method is of great potential interest for monitoring mitochondrial function in cohort samples.  相似文献   

8.
Duchenne muscular dystrophy (DMD) is a severe hereditary disease caused by a lack of dystrophin, a protein essential for myocyte integrity. Mitochondrial dysfunction is reportedly responsible for DMD. This study examines the effect of glucocorticoid deflazacort on the functioning of the skeletal-muscle mitochondria of dystrophin-deficient mdx mice and WT animals. Deflazacort administration was found to improve mitochondrial respiration of mdx mice due to an increase in the level of ETC complexes (complexes III and IV and ATP synthase), which may contribute to the normalization of ATP levels in the skeletal muscle of mdx animals. Deflazacort treatment improved the rate of Ca2+ uniport in the skeletal muscle mitochondria of mdx mice, presumably by affecting the subunit composition of the calcium uniporter of organelles. At the same time, deflazacort was found to reduce the resistance of skeletal mitochondria to MPT pore opening, which may be associated with a change in the level of ANT2 and CypD. In this case, deflazacort also affected the mitochondria of WT mice. The paper discusses the mechanisms underlying the effect of deflazacort on the functioning of mitochondria and contributing to the improvement of the muscular function of mdx mice.  相似文献   

9.
In this review we analyze the recent important and remarkable advancements in studies of compartmentation of adenine nucleotides in muscle cells due to their binding to macromolecular complexes and cellular structures, which results in non-equilibrium steady state of the creatine kinase reaction. We discuss the problems of measuring the energy fluxes between different cellular compartments and their simulation by using different computer models. Energy flux determinations by (18)O transfer method have shown that in heart about 80% of energy is carried out of mitochondrial intermembrane space into cytoplasm by phosphocreatine fluxes generated by mitochondrial creatine kinase from adenosine triphosphate (ATP), produced by ATP Synthasome. We have applied the mathematical model of compartmentalized energy transfer for analysis of experimental data on the dependence of oxygen consumption rate on heart workload in isolated working heart reported by Williamson et al. The analysis of these data show that even at the maximal workloads and respiration rates, equal to 174 μmol O(2) per min per g dry weight, phosphocreatine flux, and not ATP, carries about 80-85% percent of energy needed out of mitochondria into the cytosol. We analyze also the reasons of failures of several computer models published in the literature to correctly describe the experimental data.  相似文献   

10.
11.
12.
Heart failure is the end-stage of all cardiovascular diseases with a ~25% 5-year survival rate, and insufficient mitochondrial energy production to meet myocardial demand is the hallmark of heart failure. Mitochondrial components involved in the regulation of ATP production remain to be fully elucidated. Recently, roles of 2′,3′-cyclic nucleotide-3′-phosphodiesterase (CNPase) in the pathophysiological processes of heart diseases have emerged, implicated by evidence that mitochondrial CNPase proteins are associated with mitochondrial integrity under metabolic stress. In this study, a zebrafish heart failure model was established, by employing antisense morpholino oligonucleotides and the CRISPR-Cas9 gene-editing system, which recapitulates heart failure phenotypes including heart dysfunction, pericardial edema, ventricular enlargement, bradycardia, and premature death. The translational implications of CNPase in the pathophysiological process of heart failure were tested in a pressure overload-induced heart hypertrophy model, which was carried out in rats through transverse abdominal aorta constriction (TAAC). AAV9-mediated myocardial delivery of CNPase mitigated the hypertrophic response through the specific hydrolysis of 2′-3′-cyclic nucleotides, supported by the decrease of cardiac hypertrophy and fibrosis, the integrity of mitochondrial ultrastructure, and indicators of heart contractility in the AAV9-TAAC group. Finally, the biometrics of a mitochondrial respiration assay carried out on a Seahorse cellular energy analyzer demonstrated that CNPase protects mitochondrial respiration and ATP production from AngII-induced metabolic stress. In summary, this study provides mechanistic insights into CNPase-2′,3′-cyclic nucleotide metabolism that protects the heart from energy starvation and suggests novel therapeutic approaches to treat heart failure by targeting CNPase activity.  相似文献   

13.
14.
Statins are the most effective cholesterol-lowering drugs. They also exert many pleiotropic effects, including anti-cancer and cardio- and neuro-protective. Numerous nano-sized drug delivery systems were developed to enhance the therapeutic potential of statins. Studies on possible interactions between statins and human proteins could provide a deeper insight into the pleiotropic and adverse effects of these drugs. Adenylate kinase (AK) was found to regulate HDL endocytosis, cellular metabolism, cardiovascular function and neurodegeneration. In this work, we investigated interactions between human adenylate kinase isoenzyme 1 (hAK1) and atorvastatin (AVS), fluvastatin (FVS), pravastatin (PVS), rosuvastatin (RVS) and simvastatin (SVS) with fluorescence spectroscopy. The tested statins quenched the intrinsic fluorescence of hAK1 by creating stable hAK1-statin complexes with the binding constants of the order of 104 M−1. The enzyme kinetic studies revealed that statins inhibited hAK1 with significantly different efficiencies, in a noncompetitive manner. Simvastatin inhibited hAK1 with the highest yield comparable to that reported for diadenosine pentaphosphate, the only known hAK1 inhibitor. The determined AK sensitivity to statins differed markedly between short and long type AKs, suggesting an essential role of the LID domain in the AK inhibition. Our studies might open new horizons for the development of new modulators of short type AKs.  相似文献   

15.
Aging is associated with a progressive loss of maximal cell functionality, and mitochondria are considered a key factor in aging process, since they determine the ATP availability in the cells. Mitochondrial performance during aging in skeletal muscle is reported to be either decreased or unchanged. This heterogeneity of results could partly be due to the method used to assess mitochondrial performance. In addition, in skeletal muscle the mitochondrial population is heterogeneous, composed of subsarcolemmal and intermyofibrillar mitochondria. Therefore, the purpose of the present review is to summarize the results obtained on the functionality of the above mitochondrial populations during aging, taking into account that the mitochondrial performance depends on organelle number, organelle activity, and energetic efficiency of the mitochondrial machinery in synthesizing ATP from the oxidation of fuels.  相似文献   

16.
Mineralocorticoid receptor (MR) expression is increased in the adipose tissue (AT) of obese patients and animals. We previously demonstrated that adipocyte-MR overexpression in mice (Adipo-MROE mice) is associated with metabolic alterations. Moreover, we showed that MR regulates mitochondrial dysfunction and cellular senescence in the visceral AT of obese db/db mice. Our hypothesis is that adipocyte-MR overactivation triggers mitochondrial dysfunction and cellular senescence, through increased mitochondrial oxidative stress (OS). Using the Adipo-MROE mice with conditional adipocyte-MR expression, we evaluated the specific effects of adipocyte-MR on global and mitochondrial OS, as well as on OS-induced damage. Mitochondrial function was assessed by high throughput respirometry. Molecular mechanisms were probed in AT focusing on mitochondrial quality control and senescence markers. Adipo-MROE mice exhibited increased mitochondrial OS and altered mitochondrial respiration, associated with reduced biogenesis and increased fission. This was associated with OS-induced DNA-damage and AT premature senescence. In conclusion, targeted adipocyte-MR overexpression leads to an imbalance in mitochondrial dynamics and regeneration, to mitochondrial dysfunction and to ageing in visceral AT. These data bring new insights into the MR-dependent AT dysfunction in obesity.  相似文献   

17.
Aerobic interval training (AIT) can favorably affect cardiovascular diseases. However, the effects of AIT on post-myocardial infarction (MI)—associated mitochondrial dysfunctions remain unclear. In this study, we investigated the protective effects of AIT on myocardial mitochondria in post-MI rats by focusing on mitochondrial dynamics (fusion and fission). Mitochondrial respiratory functions (as measured by the respiratory control ratio (RCR) and the ratio of ADP to oxygen consumption (P/O)); complex activities; dynamic proteins (mitofusin (mfn) 1/2, type 1 optic atrophy (OPA1) and dynamin-related protein1 (DRP1)); nuclear peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α); and the oxidative signaling of extracellular signal-regulated kinase (ERK) 1/2, c-Jun NH2-terminal protein kinase (JNK) and P53 were observed. Post-MI rats exhibited mitochondrial dysfunction and adverse mitochondrial network dynamics (reduced fusion and increased fission), which was associated with activated ERK1/2-JNK-P53 signaling and decreased nuclear PGC-1α. After AIT, MI-associated mitochondrial dysfunction was improved (elevated RCR and P/O and enhanced complex I, III and IV activities); in addition, increased fusion (mfn2 and OPA1), decreased fission (DRP1), elevated nuclear PGC-1α and inactivation of the ERK1/2-JNK-P53 signaling were observed. These data demonstrate that AIT may restore the post-MI mitochondrial function by inhibiting dynamics pathological remodeling, which may be associated with inactivation of ERK1/2-JNK-P53 signaling and increase in nuclear PGC-1α expression.  相似文献   

18.
Cellular energy is primarily provided by the oxidative degradation of nutrients coupled with mitochondrial respiration, in which oxygen participates in the mitochondrial electron transport chain to enable electron flow through the chain complex (I–IV), leading to ATP production. Therefore, oxygen supply is an indispensable chapter in intracellular bioenergetics. In mammals, oxygen is delivered by the bloodstream. Accordingly, the decrease in cellular oxygen level (hypoxia) is accompanied by nutrient starvation, thereby integrating hypoxic signaling and nutrient signaling at the cellular level. Importantly, hypoxia profoundly affects cellular metabolism and many relevant physiological reactions induce cellular adaptations of hypoxia-inducible gene expression, metabolism, reactive oxygen species, and autophagy. Here, we introduce the current knowledge of hypoxia signaling with two-well known cellular energy and nutrient sensing pathways, AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin complex 1 (mTORC1). Additionally, the molecular crosstalk between hypoxic signaling and AMPK/mTOR pathways in various hypoxic cellular adaptions is discussed.  相似文献   

19.
Mitochondrial oxidative damage and dysfunction contribute to a wide range of human diseases. Considering the limitation of conventional antioxidants and that mitochondria are the main source of reactive oxygen species (ROS) which induce oxidative damage, mitochondria-targeted antioxidants which can selectively block mitochondrial oxidative damage and prevent various types of cell death have been widely developed. As a lipophilic cation, triphenylphosphonium (TPP) has been commonly used in designing mitochondria-targeted antioxidants. Conjugated with the TPP moiety, antioxidants can achieve more than 1000-fold higher mitochondrial concentration depending on cell membrane potentials and mitochondrial membrane potentials. Herein we discuss the deficiencies of conventional antioxidants and the advantages of mitochondrial targeting, and review various types of TPP-based mitochondria-targeted antioxidants. These provide theoretical and background support for the design of new anti-oxidant.  相似文献   

20.
Blood platelets are considered as promising candidates as easily-accessible biomarkers of mitochondrial functioning. However, their high sensitivity to various stimulus types may potentially affect mitochondrial respiration and lead to artefactual outcomes. Therefore, it is crucial to identify the factors associated with platelet preparation that may lead to changes in mitochondrial respiration. A combination of flow cytometry and advanced respirometry was used to examine the effect of blood anticoagulants, the media used to suspend isolated platelets, respiration buffers, storage time and ADP stimulation on platelet activation and platelet mitochondria respiration. Our results clearly show that all the mentioned factors can affect platelet mitochondrial respiration. Briefly, (i) the use of EDTA as anticoagulant led to a significant increase in the dissipative component of respiration (LEAK), (ii) the use of plasma for the suspension of isolated platelets with MiR05 as a respiration buffer allows high electron transfer capacity and low platelet activation, and (iii) ADP stimulation increases physiological coupling respiration (ROUTINE). Significant associations were observed between platelet activation markers and mitochondrial respiration at different preparation steps; however, the fact that these relationships were not always apparent suggests that the method of platelet preparation may have a greater impact on mitochondrial respiration than the platelet activation itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号