首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, wood-based composites have absorbed widespread concern in the field of electromagnetic interference (EMI) shielding due to their sustainability and inherent layered porous structure. The channel structure of wood is often used to load highly conductive materials to improve the EMI shielding performance of wood-based composites. However, there is little research on how to use pure wood to prepare ultrathin EMI shielding materials. Herein, ultrathin veneer is obtained by cutting wood in parallel to the annual rings. Then, carbonized wood film (CWF) is prepared by a simple two-step compressing and carbonization. The specific EMI shielding effectiveness (SSE/t) of CWF-1200 with an ultrathin thickness (140 µm) and high electrical conductivity (58 S cm−1) can reach 9861.41 dB cm2 g−1, which is much higher than other reported wood-based materials. In addition, the zeolitie imidazolate framework-8 ( ZIF-8) nanocrystals are grown in situ on the surface of the CWF to obtain CWF/ZIF-8. CWF/ZIF-8 exhibits an EMI shielding effectiveness (SE) of up to 46 dB and an ultrahigh SSE/t value of 11 330.04 dB cm2 g−1 in X band. In addition, the ultrathin CWF also shows an excellent Joule heating effect. Therefore, the development of ultrathin wood-based film provides a research basis for wood biomass to replace traditional non-renewable and expensive electromagnetic (EM) shielding materials.  相似文献   

2.
A series of novel, dense, and interesting ordered mesoporous carbon (OMC)/fused silica composites with different carbon contents has been prepared by a controllable but simple sol‐gel method followed by hot‐pressing. In the as‐sintered OMC/fused silica composites the carbon particles still exist in the form of perfectly ordered carbon nanowires. Conductivity measurements on the composites indicate that these novel composites are electrically conductive and have a typical percolation threshold of 3.5–5 vol% OMC. The electromagnetic interference (EMI) shielding efficiency (SE) of an OMC/fused silica composite containing 10 vol% OMC is as high as 40 dB in the X band which is higher than that of a carbon nanotube (CNT)/ fused silica composite with the same carbon content (~30 dB). This indicates that these conductive OMC/fused silica composites are very suitable for an application as EMI shielding materials. Upon increasing the volume content of OMC in the composite the overall contribution as well as the increase rate of the microwave absorption are larger than those of the microwave reflection, which suggest that OMC/fused silica composites may also be promising electromagnetic (EM) wave absorbing materials. Based on the promising properties of these composites this work will hopefully lead to the development of new low‐cost and highly efficient EMI shielding or EM wave absorbing materials.  相似文献   

3.
Highly conductive polymer nanocomposites are greatly desired for electromagnetic interference (EMI) shielding applications. Although transition metal carbide/carbonitride (MXene) has shown its huge potential for producing highly conductive films and bulk materials, it still remains a great challenge to fabricate extremely conductive polymer nanocomposites with outstanding EMI shielding performance at minimal amounts of MXenes. Herein, an electrostatic assembly approach for fabricating highly conductive MXene@polystyrene nanocomposites by electrostatic assembling of negative MXene nanosheets on positive polystyrene microspheres is demonstrated, followed by compression molding. Thanks to the high conductivity of MXenes and their highly efficient conducting network within polystyrene matrix, the resultant nanocomposites exhibit not only a low percolation threshold of 0.26 vol% but also a superb conductivity of 1081 S m?1 and an outstanding EMI shielding performance of >54 dB over the whole X‐band with a maximum of 62 dB at the low MXene loading of 1.90 vol%, which are among the best performances for electrically conductive polymer nanocomposites by far. Moreover, the same nanocomposite has a highly enhanced storage modulus, 54% and 56% higher than those of neat polystyrene and conventional MXene@polystyrene nanocomposite, respectively. This work provides a novel methodology to produce highly conductive polymer nanocomposites for highly efficient EMI shielding applications.  相似文献   

4.
Lightweight, flexible and anisotropic porous multiwalled carbon nanotube (MWCNT)/water‐borne polyurethane (WPU) composites are assembled by a facile freeze‐drying method. The composites contain extremely wide range of MWCNT mass ratios and show giant electromagnetic interference (EMI) shielding effectiveness (SE) which exceeds 50 or 20 dB in the X‐band while the density is merely 126 or 20 mg cm?3, respectively. The relevant specific SE is up to 1148 dB cm3 g?1, greater than those of other shielding materials ever reported. The ultrahigh EMI shielding performance is attributed to the conductivity of the cell walls caused by MWCNT content, the anisotropic porous structures, and the polarization between MWCNT and WPU matrix. In addition to the enhanced electrical properties, the composites also indicate enhanced mechanical properties compared with porous WPU and CNT architectures.  相似文献   

5.
Low-cost MiniDIP laser modules fabricated by plastic moulded technology filled with highly conductive materials are proposed for the evaluation of electromagnetic interference (EMI) shielding effectiveness (SE). The SE of conductive plastics was measured to be 45 dB at 30 MHz and 62 dB at 1 GHz. The laser modules have a transmission speed up to 622 Mbit/s and >1 mW fibre output power. With these excellent SEs and good optical characteristics, such plastic MiniDIP laser modules are suitable for use in low-cost OC-12 lightwave transmission systems  相似文献   

6.
Although flexible and multifunctional textiles are promising for wearable electronics and portable device applications, the main issue is to endow textiles with multifunctionalities while maintaining their innate flexible and porous features. Herein, a vacuum‐assisted layer‐by‐layer assembly technique is demonstrated to conformally deposit electrically conductive substances on textiles for developing multifunctional and flexible textiles with superb electromagnetic interference (EMI) shielding performances, superhydrophobicity, and highly sensitive humidity response. The formed leaf‐like nanostructure is composed of silver nanowires (AgNWs) as the highly conductive skeleton (vein) and transition metal carbide/carbonitride (MXene) nanosheets as the lamina. The presence of MXene protects AgNWs from oxidation and enhances the combination of AgNWs with the fabric substrate, and the transformation of its functional groups leads to self‐derived hydrophobicity. The flexible and multifunctional textile exhibits a low sheet resistance of 0.8 Ω sq?1, outstanding EMI shielding efficiency of 54 dB in the X‐band at a small thickness of 120 µm, and highly sensitive humidity responses, while retaining its satisfactory porosity and permeability. The self‐derived hydrophobicity with a large contact angle of >140° is achieved by aging the hydrophilic MXene coated silk. The wearable multifunctional textiles are highly promising for applications in intelligent garments, humidity sensors, actuators, and EMI shielding.  相似文献   

7.
Light‐weight and high‐performance electromagnetic interference (EMI)‐shielding epoxy nanocomposites are prepared by an infiltration method using a 3D carbon nanotube (CNT) sponge as the 3D reinforcement and conducting framework. The preformed, highly porous, and electrically conducting framework acts as a highway for electron transport and can resist a high external loading to protect the epoxy nanocomposite. Consequently, a remarkable conductivity of 148 S m?1 and an outstanding EMI shielding effectiveness of around 33 dB in the X‐band are achieved for the epoxy nanocomposite with 0.66 wt% of CNT sponge, which is higher than that achieved for epoxy nanocomposites with 20 wt% of conventional CNTs. More importantly, the CNT sponge provides a dual advantage over conventional CNTs in its prominent reinforcement and toughening of the epoxy composite. Only 0.66 wt% of CNT sponge significantly increases the flexural and tensile strengths by 102% and 64%, respectively, as compared to those of neat epoxy. Moreover, the nanocomposite shows a 250% increase in tensile toughness and a 97% increase in elongation at break. These results indicate that CNT sponge is an ideal functional component for mechanically strong and high‐performance EMI‐shielding nanocomposites.  相似文献   

8.
Intrinsically conducting polymers can have important application in biology because they can be conductive and have good biological compatibility. Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) has been the most popular conductive polymer in biological application due to its solution processability in water. PEDOT:PSS can be used as electrode materials or active materials of biological devices or circuits. It is important to study the effect of biomaterials on the structure and properties of PEDOT:PSS films. In this work, water-soluble vitamins that are biomaterials needed for organisms are used to treat PEDOT:PSS. They can significantly enhance the conductivity of PEDOT:PSS from 0.3 S cm−1 up to higher than 1000 S cm−1. The conductivity enhancement depends on the structure of vitamins. The highest conductivity enhancement was observed for PEDOT:PSS treated with vitamin B3. The vitamin-induced changes in the structure and properties of PEDOT:PSS were studied by UV–Vis absorption spectroscopy, temperature-dependence of resistance measurements, atomic force microscopy and cyclic voltammetry. The characterizations indicate that vitamins can induce phase segregation between PEDOT and PSS and the conformational change of the PEDOT chains. These discoveries are important to understand the application of PEDOT:PSS in biology and the development of new biological application of PEDOT:PSS.  相似文献   

9.
MXene aerogels have shown great potential for many important functional applications, in particular electromagnetic interference (EMI) shielding. However, it has been a grand challenge to create mechanically hyperelastic, air-stable, and durable MXene aerogels for enabling effective EMI protection at low concentrations due to the difficulties in achieving tailorable porous structures, excellent mechanical elasticity, and desired antioxidation capabilities of MXene in air. Here, a facile strategy for fabricating MXene composite aerogels by co-assembling MXene and cellulose nanofibers during freeze-drying followed by surface encapsulation with fire-retardant thermoplastic polyurethane (TPU) is reported. Because of the maximum utilization of pore structures of MXene, and conductive loss enhanced by multiple internal reflections, as-prepared aerogel with 3.14 wt% of MXene exhibits an exceptionally high EMI shielding effectiveness of 93.5 dB, and an ultra-high MXene utilization efficiency of 2977.71 dB g g−1, tripling the values in previous works. Owing to the presence of multiple hydrogen bonding and the TPU elastomer, the aerogel exhibits a hyperelastic feature with additional strength, excellent stability, superior durability, and high fire safety. This study provides a facile strategy for creating multifunctional aerogels with great potential for applications in EMI protection, wearable devices, thermal management, pressure sensing, and intelligent fire monitoring.  相似文献   

10.
The thermoelectric performance of thin films fabricated from two commercially available, highly conductive polymer formulations based on poly (3,4-ethylendioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was investigated. In order to enhance the electrical conductivity, the high-boiling solvent dimethyl sulfoxide (DMSO) was added. By changing the content of DMSO the electrical conductivity was increased by a factor of two without changing the Seebeck coefficient or the thermal conductivity. We achieved ZT = 9.2 × 10−3 at room temperature upon the addition of 5 vol.% DMSO to the PEDOT:PSS formulation.  相似文献   

11.
We report high performance solution processed conductive inks used as contact electrodes for printed organic field effect transistors (OFETs). Poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) electrodes show highly improved very low sheet resistance of 65.8 ± 6.5 Ω/square (Ω/□) by addition of dimethyl sulfoxide (DMSO) and post treatment with methanol (MeOH) solvent. Sheet resistance was further improved to 33.8 ± 8.6 Ω/□ by blending silver nanowire (AgNW) with DMSO doped PEDOT:PSS. Printed OFETs with state of the art diketopyrrolopyrrole-thieno[3,2-b]thiophene (DPPT-TT) semiconducting polymer were demonstrated with various solution processable conductive inks, including bare, MeOH treated PEDOT:PSS, single wall carbon nanotubes, and hybrid PEDOT:PSS-AgNW, as the source and drain (S/D) electrode by spray printing using a metal shadow mask. The highest field effect mobility, 0.49 ± 0.03 cm2 V−1 s−1 for DPPT-TT OFETs, was obtained using blended AgNW with DMSO doped PEDOT:PSS S/D electrode.  相似文献   

12.
The thermoelectric generator has been an attractive alternative power source to operate a wireless sensor node. Usually, inorganic compounds are most often used in thermoelectric devices, and hence, are extensively studied due to their superior thermoelectric performance. We have investigated a novel interfacial technique to fabricate a hybrid film of highly conductive PEDOT:PSS (poly 3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) and graphene. Organic materials PEDOT doped with PSS exhibits outstanding electrical properties due to its high conductivity, low bandgap, and energy migration. Furthermore, we utilized graphene fabricated by rapid thermal chemical vapor deposition (RTCVD) as a thermoelectric material. Our results show that the interfacial technique between substrate and hybrid film could be clearly improved due to the UV plasma treatment. The thermoelectric hybrid film of PEDOT:PSS and RTCVD graphene (P/RTG) exhibited an enhanced power factor of 56.28 μW m−1 K−2 with a Seebeck coefficient of 54.0 μV K−1.  相似文献   

13.
Indium tin oxide (ITO)-free organic photovoltaic (OPV) devices were fabricated using highly conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as the transparent conductive electrode (TCE). The intrinsic conductivity of the PEDOT:PSS films was improved by two different dimethyl sulfoxide (DMSO) treatments – (i) DMSO was added directly to the PEDOT:PSS solution (PEDOT:PSSADD) and (ii) a pre-formed PEDOT:PSS film was immersed in DMSO (PEDOT:PSSIMM). X-ray photoelectron spectroscopy (XPS) and conductive atomic force microscopy (CAFM) studies showed a large amount of PSS was removed from the PEDOT:PSSIMM electrode surface. OPV devices based on a poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) bulk hetrojunction showed that the PEDOT:PSSIMM electrode out-performed the PEDOT:PSSADD electrode, primarily due to an increase in short circuit current density from 6.62 mA cm−2 to 7.15 mA cm−2. The results highlight the importance of optimising the treatment of PEDOT:PSS electrodes and demonstrate their potential as an alternative TCE for rapid processing and low-cost OPV and other organic electronic devices.  相似文献   

14.
Cathode with low work-function (WF) is a vital unit in optoelectronic devices. Yet, the stable cathode is still a big challenge. Here, PEDOT:PSS-TBA is reported among series of PEDOT:PSS-M, where PEDOT:PSS denotes poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), M refers to monovalent cation and TBA is tetrabutylammonium specifically, as a stable cathode. The PEDOT:PSS-TBA is synthesized via ion exchange with WF of 4.1–4.2 eV and its conductivity can be improved to 300 S cm−1 by the additive. Meanwhile, PEDOT:PSS-TBA is stable even under plasma, heat, or isopropanol sonication. Organic solar cells (OSCs) are fabricated with indium tin oxide (ITO)/PEDOT:PSS-TBA and highly conductive PEDOT:PSS-TBA (with additive, hc-PEDOT:PSS) electrodes respectively. The OSCs display superior stability than the reference with ITO/ZnO as the cathode. As a proof of concept, solution-processed OSCs are demonstrated with a three-layered structure (hc-PEDOT:PSS-TBA/active layer/PEDOT:PSS), which proves PEDOT:PSS-TBA as a promising cathode for printable optoelectronic with a simplified structure.  相似文献   

15.
Ten different commercially available conductive thermoplastic materials have been tested for near- and far-field shielding effectiveness (SE). Far-field SE was tested using a modified standard measurement technique to provide results comparable with the company-provided data. Further, housings of different thermoplastic materials were constructed and equipped with an electromagnetic interference (EMI) source to model a realistic near-field SE situation. The SE data up to 1 GHz is presented. Conductive thermoplastic materials with fillings of stainless steel fibers and nickel-coated carbon fibers were the two materials that offer the best far-field shielding performance. For the near-field shielding, two materials with filling of stainless steel fibers were the best performing ones. A thermoplastic with polycarbonate (PC) base and stainless steel content of 1.5 vol% showed the best combined far- and near-field shielding results  相似文献   

16.
We report on the adhesion of weak interfaces in inverted P3HT:PCBM-based polymer solar cells (OPV) with either a conductive polymer, PEDOT:PSS, or a metal oxide, molybdenum trioxide (MoO3), as the hole transport layer. The PEDOT:PSS OPVs were prepared by spin or spray coating on glass substrates, or slot-die coating on flexible PET substrates. In all cases, we observed adhesive failure at the interface between the P3HT:PCBM with PEDOT:PSS layer. The adhesion energy measured for the solar cells made on glass substrates was about 1.8 J/m2, but only 0.5 J/m2 for the roll-to-roll processed flexible solar cells. The adhesion energy was insensitive to the PEDOT:PSS layer thickness in the range of 10–40 nm. A marginal increase in adhesion energy was measured with increased O2 plasma power. Compared to solution processed PEDOT:PSS, we found that thermally evaporated MoO3 adheres less to the P3HT:PCBM layer, which we attributed to the reduced mixing at the MoO3/P3HT:PCBM interface during the thermal evaporation process. Insights into the mechanisms of delamination and the effect of different material properties and processing parameters yield general guidelines for the design of more reliable organic photovoltaic devices.  相似文献   

17.
Halide perovskites are promising candidates for resistive memories (memristors) due to their mixed electronic/ionic conductivity and the real activation mechanism is currently under debate. In order to unveil the role of the metal contact and its connection with the activation process, four model systems are screened on halide perovskite memristors: Nearly inert metals (Au and Pt), low reactivity contacts (Cu), highly reactive contact (Ag and Al), and pre-oxidized metal in the form of AgI. It is revealed that the threshold voltage for activation of the memory effect is highly connected with the electrochemical activity of the metals. Redox/capacitive peaks are observed for reactive metals at positive potentials and charged ions are formed that can follow the electrical field. Activation proceeds by formation of conductive filaments, either by the direct migration of the charged metals or by an increase in the concentration of halide vacancies generated by this electrochemical reaction. Importantly, the use of pre-oxidized Ag+ ions leads to very low threshold voltages of ≈0.2 V indicating that an additional electrochemical reaction is not needed in this system to activate the memristor. Overall, the effect of the metal contact is clarified, and it is revealed that AgI is a very promising interfacial layer for low-energy applications.  相似文献   

18.
The water−based conductive polymer, poly(3,4−ethylenedioxythiophene), doped with poly(styrene sulfonate) (PEDOT:PSS), has received much attention for its utility as a printable electrode due to its transparency, thermal stability, and processability; however, the electrical properties of devices prepared with printed PEDOT:PSS electrodes are generally inferior to those of devices fabricated with evaporated metal electrodes or their inorganic counterparts. Here, we show that the electrical performances of polymer thin film transistors could be improved by doping the PEDOT:PSS chains used as source and drain electrodes. The addition of HAuCl4 to the PEDOT:PSS solution increased the electrical conductivity and work function of the electrodes. The PEDOT:PSS film doped with 10 mM HAuCl4 provided a field effect mobility exceeding 0.01 cm2V−1s−1, a factor of 7 greater than the value obtained from the device prepared with pristine PEDOT electrodes.  相似文献   

19.
The thermoelectric performance of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) pellets and free-standing PEDOT/PSS films, prepared from PEDOT/PSS solution containing the additives dimethyl sulfoxide or ethylene glycol, have been systematically investigated. It has been found that the electrical conductivity of free-standing PEDOT/PSS films is invariably much higher than that of PEDOT/PSS pellets, while there is no distinct change in the Seebeck coefficient. The highest electrical conductivity of a free-standing PEDOT/PSS film can be up to 300 S cm−1, five to six times higher than that of PEDOT/PSS pellets (55 S cm−1). The thermal conductivity was measured over a wide temperature range, indicating that PEDOT/PSS has extremely low thermal conductivity. The figure of merit (ZT) of free-standing PEDOT/PSS films with good environmental stability can be up to 10−2, an order of magnitude higher than that of pressed PEDOT/PSS pellets (10−3).  相似文献   

20.
Organic materials for thermoelectric (TE) applications have attracted a fair amount of attention in recent years due to remarkable advances achieved in terms of their figure of merit, ZT: a value of 0.42 has been reported by for poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) films treated with dimethyl sulfoxide, while 0.25 has been obtained for PEDOT:Tosylate. In this study various PEDOT morphologies are investigated, considering both neutral and doped (bipolaronic) samples, by means of classical molecular dynamics, by taking advantage of a recently developed all-atom force field. In the case of bare PEDOT, it is found that changing the distribution of chain lengths affects the thermal conductivity of neutral and doped samples in a different way: longer chain lengths result in higher conductivities in the neutral scenario, whereas an intermediate chain length gives the highest value in the bipolaronic case. The role of PSS in the bipolaronic state, as compared to the simpler case where the counterion is Cl, is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号