首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Triggering the anionic redox chemistry in layered oxide cathodes has emerged as a paradigmatic approach to efficaciously boost the energy density of sodium-ion batteries. However, their practical applications are still plagued by irreversible lattice oxygen release and deleterious structure distortion. Herein, a novel P2-Na0.76Ca0.05[Ni0.230.08Mn0.69]O2 cathode material featuring joint cationic and anionic redox activities, where native vacancies are produced in the transition-metal (TM) layers and Ca ions are riveted in the Na layers, is developed. Random vacancies in the TM sites induce the emergence of nonbonding O 2p orbitals to activate anionic redox, which is confirmed by systematic electrochemical measurements, ex situ X-ray photoelectron spectroscopy, in situ X-ray diffraction, and density functional theory computations. Benefiting from the pinned Ca ions in the Na sites, a robust layered structure with the suppressed P2-O2 phase transition and enhanced anionic redox reversibility upon charge/discharge is achieved. Therefore, the electrode displays exceptional rate capability (153.9 mA h g−1 at 0.1 C with 74.6 mA h g−1 at 20 C) and improved cycling life (87.1% capacity retention at 0.1 C after 50 cycles). This study provides new opportunities for designing high-energy-density and high-stability layered sodium oxide cathodes by tuning local chemical environments.  相似文献   

2.
Anionic and cationic redox chemistries boost ultrahigh specific capacities of Li-rich Mn-based oxides cathodes (LRMO). However, irreversible oxygen evolution and sluggish kinetics result in continuous capacity decay and poor rate performance, restricting the commercial fast-charging cathodes application for lithium ion batteries. Herein, the local electronic structure of LRMO is appropriately modulated to alleviate oxygen release, enhance anionic redox reversibility, and facilitate Li+ diffusion via facile surface defect engineering. Concretely, oxygen vacancies integrated on the surface of LRMO reduce the density of states of O 2p band and trigger much delocalized electrons to distribute around the transition metal, resulting in less oxygen release, enhancing reversible anionic redox and the MnO6 octahedral distortion. Besides, partially reduced Mn and lattice vacancies synchronously stimulate the electrochemical activity and boost the electronic conductivity, Li+ diffusion rate, and fast charge transfer. Therefore, the modified LRMO exhibits enhanced cyclic stability and fast-charging capability: a high discharging capacity of 212.6 mAh·g−1 with 86.98% capacity retention after 100 cycles at 1 C is obtained and to charge to its 80%, SOC is shortened to 9.4 min at 5 C charging rate. This work will draw attention to boosting the fast-charging capability of LRMO via the local electronic structure modulation.  相似文献   

3.
Oxygen-redox-based-layered cathode materials are of great importance in realizing high-energy-density sodium-ion batteries (SIBs) that can satisfy the demands of next-generation energy storage technologies. However, Mn-based-layered materials (P2-type Na-poor Nay[AxMn1−x]O2, where A = alkali ions) still suffer from poor reversibility during oxygen-redox reactions and low conductivity. In this work, the dual Li and Co replacement is investigated in P2-type-layered NaxMnO2. Experimentally and theoretically, it is demonstrated that the efficacy of the dual Li and Co replacement in Na0.6[Li0.15Co0.15Mn0.7]O2 is that it improves the structural and cycling stability despite the reversible Li migration from the transition metal layer during de-/sodiation. Operando X-ray diffraction and ex situ neutron diffraction analysis prove that the material maintains a P2-type structure during the entire range of Na+ extraction and insertion with a small volume change of ≈4.3%. In Na0.6[Li0.15Co0.15Mn0.7]O2, the reversible electrochemical activity of Co3+/Co4+, Mn3+/Mn4+, and O2-/(O2)n- redox is identified as a reliable mechanism for the remarkable stable electrochemical performance. From a broader perspective, this study highlights a possible design roadmap for developing cathode materials with optimized cationic and anionic activities and excellent structural stabilities for SIBs.  相似文献   

4.
Anionic redox chemistry has aroused increasing attention in sodium-ion batteries (SIBs) by virtue of the appealing additional capacity. However, up to now, anionic redox reaction has not been reported in the mainstream phosphate cathodes for SIBs. Herein, the ultrathin VOPO4 nanosheets are fabricated as promising cathodes for SIBs, where the oxygen redox reaction is first activated accompanied by reversible ClO4 (from the electrolyte) insertion/extraction. As a result, the VOPO4 cathode harvests a record-high capacity (168 mAh g−1 at 0.1 C) among its counterparts ever reported. Moreover, the ClO4 insertion efficiently expands the interlayer spacing of VOPO4 and accelerates the ion diffusion, enabling an unprecedentedly high rate performance (69 mAh g−1 at 30 C). Via systematic ex situ characterizations and theoretical computations, the anionic redox chemistry and charge storage mechanism upon cycling are thoroughly elucidated. This study opens up a new avenue toward high-energy phosphate cathodes for SIBs by triggering anionic redox reactions.  相似文献   

5.
Compared with conventional positive electrode materials in Li-ion batteries, Li-rich materials have a huge advantage of large specific capacities of >300 mAh g−1. Anionic redox mechanism is proposed to explain the over-capacity, which means anions can participate in the redox process for charge compensation. The concept enriches the range and design considerations of high-energy-density positive electrode materials for both Li-ion and Na-ion batteries, which therefore arouses extensive attention. This review summarizes the progress of anionic redox in rechargeable batteries in recent years and discusses the fundamental mechanism that triggers anionic redox. Moreover, the state-of-the-art materials involving anionic redox are illustrated, accompanied by the challenges for practical applications. Furthermore, the common techniques for monitoring anionic redox are reviewed and compared for an advisable choice in future studies. Finally, the consideration and discussion for designing stable positive electrodes based on cationic and anionic redox are presented. The perspective is highlighted and this review provides a basic understanding of anionic redox in rechargeable batteries and paves the way to develop high-capacity positive electrodes for high-energy battery systems.  相似文献   

6.
Anionic redox processes are vital to realize high capacity in lithium‐rich electrodes of lithium‐ion batteries. However, the activation mechanism of these processes remains ambiguous, hampering further implementation in new electrode design. This study demonstrates that the electrochemical activity of inert cubic‐Li2TiO3 is triggered by Fe3+ substitution, to afford considerable oxygen redox activity. Coupled with first principles calculations, it is found that electron holes tend to be selectively generated on oxygen ions bonded to Fe rather than Ti. Subsequently, a thermodynamic threshold is unravelled dictated by the relative values of the Coulomb and exchange interactions (U) and charge‐transfer energy (Δ) for the anionic redox electron‐transfer process, which is further verified by extension to inactive layered Li2TiS3, in which the sulfur redox process is activated by Co substitution to form Li1.2Ti0.6Co0.2S2. This work establishes general guidance for the design of high‐capacity electrodes utilizing anionic redox processes.  相似文献   

7.
Cathodes in lithium-ion batteries with anionic redox can deliver extraordinarily high specific capacities but also present many issues such as oxygen release, voltage hysteresis, and sluggish kinetics. Identifying problems and developing solutions for these materials are vital for creating high-energy lithium-ion batteries. Herein, the electrochemical and structural monitoring is conducted on lithium-rich cathodes to directly probe the formation processes of larger voltage hysteresis. These results indicate that the charge-compensation properties, structural evolution, and transition metal (TM) ions migration vary from oxidation to reduction process. This leads to huge differences in charge and discharge voltage profile. Meanwhile, the anionic redox processes display a slow kinetics process with large hysteresis (≈0.5 V), compared to fast cationic redox processes without any hysteresis. More importantly, a simple yet effective strategy has been proposed where fine-modulating local oxygen environment by the lithium/oxygen (Li/O) ratio tunes the anionic redox chemistry. This effectively improves its electrochemical properties, including the operating voltage and kinetics. This is also verified by theoretical calculations that adjusting anionic redox chemistry by the Li/O ratio shifts the TM 3d—O 2p bands and the non-bonding O 2p band to a lower energy level, resulting in a higher redox reaction potential.  相似文献   

8.
Layered oxides are the most prevalent cathodes for sodium-ion batteries (SIBs), but their poor air stability significantly limits their practical application owing to the rapid performance degradation of aged materials and the cost increase for material storage and transportation. Here, an effective strategy of constructing stable transition metal (TM) layers with a highly symmetrical six-TM ring is suggested to enhance structure stability, thus hindering ambient air corrosion. The density functional theory calculations reveal that the higher symmetry ensures a higher thermodynamic energy for H2O insertion into Na layer. The combined analyses of selected area electron diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and chemical titration indicate that the six-TM ring structure can effectively suppress the series of aging processes including water insertion, the spontaneous loss of lattice sodium, TM valence increment and residual alkali formation. Benefiting from the overall suppression of aging process, the strategy results in an excellent improvement in capacity retention after air exposure from 13.57% to 95.59%, and exhibits a good universality for both P2- and O3-cathodes, which are the two most common structures of Na-based layered oxides with different aging mechanism. These findings provide new insight to design high-performance cathodes for SIBs.  相似文献   

9.
Cation-disordered rocksalts (DRXs) have emerged as a new class of high-capacity Li-ion cathode materials. One unique advantage of the DRX chemistry is the structural flexibility that substantially lessens the elemental constraints in the crystal lattice, such as Li content, choice of transition metal redox center paired with appropriate d0 metal, and incorporation of F anion, which allows optimization of the key redox reactions. Herein, a series of the DRX oxyfluorides based on the Mn redox have been designed and synthesized. By tailoring the stoichiometry of the DRX compositions, high-capacity cycling by promoting the cationic Mn2+/Mn4+ redox reactions while suppressing those from anionic O is successfully demonstrated. A highly fluorinated DRX compound, Li1.2Mn0.625Nb0.175O1.325F0.675 (M0.625F0.675), delivers a capacity of ≈170 mAh g−1 at C/3 for 100 cycles. This work showcases the concept of balancing the cationic and anionic redox reactions in the DRX cathodes for improved electrochemical performance through the rational composition design.  相似文献   

10.
Rechargeable aqueous zinc‐ion batteries hold great promise for potential applications in large‐scale energy storage, but the reversible insertion of bivalent Zn2+ and fast reaction kinetics remain elusive goals. Hence, a highly reversible Zn/VNx Oy battery is developed, which combines the insertion/extraction reaction and pseudo‐capacitance‐liked surface redox reaction mechanism. The energy storage is induced by a simultaneous reversible cationic (V3+ ? V2+) and anionic (N3? ? N2?) redox reaction, which are mainly responsible for the high reversibility and no structural degradation of VNxOy. As expected, a superior rate capability of 200 mA h g?1 at 30 A g?1 and high cycling stability up to 2000 cycles are achieved. This finding opens new opportunities for the design of high‐performance cathodes with fast Zn2+ reaction kinetics for advanced aqueous zinc‐ion batteries.  相似文献   

11.
Cerium, a unique rare earth element, possesses a relatively high abundance, low cost, and high redox voltage, making it an attractive candidate for redox flow batteries. However, the sluggish kinetics and corrosion nature of the Ce3+/Ce4+ electrolyte result in overpotential and degradation of carbon felt (CF) electrodes, which hinders the development of cerium-based flow batteries. Therefore, it is essential to develop an electrode with high catalytic activity and corrosion resistance to the Ce3+/Ce4+ electrolyte. Herein, a TiC/TiO2 coated carbon felt (TiC/TiO2-CF) electrode is proposed. Remarkably, the TiC/TiO2 coating effectively minimizes the exposure of the CF to the highly corrosive cerium electrolyte, consequently enhancing the electrode's corrosion resistance. Additionally, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy characterizations reveal the formation of a heterojunction between TiC and TiO2, which significantly enhances the redox reaction kinetics of the Ce3+/Ce4+ redox couple. Eventually, the practical application of TiC/TiO2-CF catalytic electrode in a Ce–Fe flow battery is demonstrated. This study sheds light on the synthesis conditions of the TiC/TiO2-CF electrode, elucidates its heterojunction structure, and presents a novel Ce–Fe flow battery system.  相似文献   

12.
Redox flow batteries (RFBs) are one of the promising technologies for large‐scale energy storage applications. For practical implementation of RFBs, it is of great interest to improve their efficiency and reduce their cost. One of the key components of RFBs that can greatly influence the efficiency and final cost is the electrode. The chemical and structural nature of electrodes can modify the kinetics of redox reactions and the accessibility of the electroactive species to available active sites. The ideal electrocatalyst for RFBs must have good activity for the desirable redox reaction, provide a high surface area, and exhibit sufficient conductivity and durability over repeated use. One strategy is to coat the electrode with metal and metal oxide electrocatalysts. Metal electrocatalysts have the advantage of high conductivity, while metal oxide catalysts are usually less expensive and so more economically attractive. In order to gain a better understanding of the performance of the electrocatalysts in RFBs, a comprehensive review of the progress in the development of metal and metal oxide electrocatalysts for RFBs is provided and a critical comparison of the latest developments is presented. Finally, practical recommendations for advancement of electrocatalysts and effective transfer of knowledge in this field are provided.  相似文献   

13.
Anion energy storage provides the possibility to achieve higher specific capacity in lithium-ion battery cathode materials, but the problems of capacity attenuation, voltage degradation, and inconsistent redox behavior are still inevitable. In this paper, a novel O2-type manganese-based layered cathode material Lix[Li0.2Mn0.8]O2 with a ribbon superlattice structure is prepared by electrochemical ion exchange, which realizes the highly reversible redox of anions and excellent cycle performance. Through low-voltage pre-cycling treatment, the specific capacity of the material can reach 230 mAh g−1 without obvious voltage attenuation. During the electrochemical ion exchange, the precursor with P2 structure transforms into Lix[Li0.2Mn0.8]O2 with O2 structure through the slippage and shrink of adjacent slabs, and the special superlattice structure in Mn slab is still retained. Simultaneously, a certain degree of lattice mismatch and reversible distortion of the MnO6 octahedron occur. In addition, the anion redox catalyzes the formation of the solid electrolyte interface, stabilizing the electrode/electrolyte interface and inhibiting the dissolution of Mn. The mechanism of electrochemical ion exchange is systematically studied by comprehensive structural and electrochemical characterization, opening an attractive path for the realization of highly reversible anion redox.  相似文献   

14.
Governing the fundamental reaction in lithium–oxygen batteries is vital to realizing their potentially high energy density. Here, novel oxygen reduction reaction (ORR) catalysts capable of mediating the lithium and oxygen reaction within a solution‐driven discharge, which promotes the solution‐phase formation of lithium peroxide (Li2O2), are reported, thus enhancing the discharge capacity. The new catalysts are derived from mimicking the biological redox mediation in the electron transport chain in Escherichia coli, where vitamin K2 mediates the oxidation of flavin mononucleotide and the reduction of cytochrome b in the cell membrane. The redox potential of vitamin K2 is demonstrated to coincide with the suitable ORR potential range of lithium–oxygen batteries in aprotic solvent, thereby enabling its successful functioning as a redox mediator (RM) triggering the solution‐based discharge. The use of vitamin K2 prevents the growth of film‐like Li2O2 even in an ether‐based electrolyte, which has been reported to induce surface‐driven discharge and early passivation of the electrode, thus boosting the discharge capacity by ≈30 times. The similarity of the redox mediation in the biological cell and lithium–oxygen “cell” inspires the exploration of redox active bio‐organic compounds for potential high‐performance RMs toward achieving high specific energies for lithium–oxygen batteries.  相似文献   

15.
The rapid progress of lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) have extensively promoted the rechargeable battery technology in the fields of electric vehicles and grid scale energy storage systems. With recent highly effective nitrogen doping strategy in terms of improving the overall electrochemical performance in various sorts of battery systems, the bulk N doping/substitution lays on the core innovations toward structural manipulation toward higher ionic conductivity, elevated reversible working plateau, etc. However, the key scientific and practical issues such as the phase formation process, phase transition kinetics, valence change and anionic/cationic physical/chemical behaviors still leave open questions in the direction of their real applications in the next-generation battery technology. In light of this, a timely and in-depth perspective is provided on the development of the bulk N doping/substitution strategy of these high-performance electrodes of LIBs/SIBs adapting nitrogen as anionic center/dopant. Both the variations of phase and structural constitutions, alkali ion storage mechanism, electrochemical change, and the alkali ion kinetics, which are the key scientific parts for the future explorations of these novel and promising electrodes are highlighted. The most urgent and critical commercial obstacles or challenges towards cost-efficiency synthetic approach without excessive environmental pollutions are also outlined. With the participation of nitrogen in bulk crystals , the overall specific energy density of next-generation alkali ion batteries will be reasonably promoted and accelerated in the near future.  相似文献   

16.
Heterostructure engineering is one of the most promising modification strategies for reinforcing Na+ storage of transition metal sulfides. Herein, based on the spontaneous hydrolysis-oxidation coupling reaction of transition metal sulfides in aqueous media, a VOx layer is induced and formed on the surface of VS2, realizing tight combination of VS2 and VOx at the nanoscale and constructing homologous VS2/VOx heterostructure. Benefiting from the built-in electric field at the heterointerfaces, high chemical stability of VOx, and high electrical conductivity of VS2, the obtained VS2/VOx electrode exhibits superior cycling stability and rate properties. In particular, the VS2/VOx anode shows a high capacity of 878.2 mAh g−1 after 200 cycles at 0.2 A g−1. It also exhibits long cycling life (721.6 mAh g−1 capacity retained after 1000 cycles at 2 A g−1) and ultrahigh rate property (up to 654.8 mAh g−1 at 10 A g−1). Density functional theory calculations show that the formation of heterostructures reduces the activation energy for Na+ migration and increases the electrical conductivity of the material, which accelerates the ion/electron transfer and improves the reaction kinetics of the VS2/VOx electrode.  相似文献   

17.
A sodium‐ion battery operating at room temperature is of great interest for large‐scale stationary energy storage because of its intrinsic cost advantage. However, the development of a high capacity cathode with high energy density remains a great challenge. In this work, sodium super ionic conductor‐structured Na3V2?xCrx(PO4)3 is achieved through the sol–gel method; Na3V1.5Cr0.5(PO4)3 is demonstrated to have a capacity of 150 mAh g?1 with reversible three‐electron redox reactions after insertion of a Na+, consistent with the redox couples of V2+/3+, V3+/4+, and V4+/5+. Moreover, a symmetric sodium‐ion full cell utilizing Na3V1.5Cr0.5(PO4)3 as both the cathode and anode exhibits an excellent rate capability and cyclability with a capacity of 70 mAh g?1 at 1 A g?1. Ex situ X‐ray diffraction analysis and in situ impedance measurements are performed to reveal the sodium storage mechanism and the structural evolution during cycling.  相似文献   

18.
Despite the van der Waals (vdW) surfaces are usually chemically inert, un-destructive, scalable, and reversible redox reactions are introduced on the vdW surfaces of 2D anisotropic semiconductors ReX2 (X = S or Se) facilitated by simple photochemistry. Ultraviolet (UV) light (with humid) and laser exposure can reversibly oxidize and reduce rhenium disulfide (ReS2) and rhenium diselenide (ReSe2), respectively, yielding a pronounced doping effect with good control. Evidenced by Raman spectroscopy, dynamic force microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy, the grafting and removal of covalently functionalized oxygen groups on the perfect vdW surfaces are confirmed. The optical and electrical properties can be thereby reversibly tunable in wide ranges. Such optical direct-writing and rewritable capability via solvent/contaminant-free approach for chemical doping are compelling in the coming era of 2D materials.  相似文献   

19.
Lithium-rich layered oxides (LROs) are one class of the most competitive high-capacity cathode materials due to their anion/cation synergistic redox activity. However, excessive oxidation of the oxygen sublattices can induce serious oxygen loss and structural imbalance. Hence, a near-surface reconfiguration strategy by fluorinating graphene is proposed to precisely regulate Mn3+/Mn4+ and O2−/(O2)n− redox couples for remarkably stabilizing high-capacity LROs and realizing the simultaneous reduction of the lattice stress, regulation of the Mn metal at a lower charge state, and construction of 3D Li+ diffusion channels. Combining with a highly conductive graphene-coating layer, the surface oxygen loss, transition metal dissolution, and electrolyte catalytic decomposition are suppressed. Benefiting from this synergy, the modified LROs disclose higher initial Coulombic efficiency and discharge-specific capacity and improve cyclability compared with pristine LROs. Further, it is revealed that the F impact becomes easier for the O sites at the lattice interface of C2/m and R 3 ¯ $\bar{3}$ m to sufficiently buffer lattice stress. Moreover, lithium ions coupled to the doped F atoms at the lattice interface migrate to the Ni-rich R 3 ¯ $\bar{3}$ m lattice sites with lower migration energies. This consolidated understanding will open new avenues to regulate reversible oxygen redox of LROs for high-energy-density lithium-ion batteries.  相似文献   

20.
Lithium–oxygen batteries with an exceptionally high theoretical energy density have triggered worldwide interest in energy storage system. The research focus of lithium–oxygen batteries lies in the development of catalytic materials with excellent cycling stability and high bifunctional catalytic activity in oxygen reduction and oxygen evolution reactions. Here, a hierarchically porous flower‐like cobalt–titanium layered double oxide on nickel foam with intercalated anions of bistrifluoromethane sulfonamide (TFSI) is designed and prepared. When used as a binder‐free cathode for lithium–oxygen batteries, this material exhibits low polarization (initial polarization of 0.45 V) and superior cycling stability (80 cycles at a current density of 100 mA g?1 at full discharge/charge). The high electrochemical performance of the cathode material is attributed to the good dispersion of binary elements in its host layer and good compatibility with lithium bistrifluoromethane sulfonamide electrolyte induced by intercalated guest anions of TFSI within its interlayer. This work provides a novel strategy for the fabrication of binder‐free cathodes based on layered double oxides for high‐performance lithium–oxygen batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号